Atlas Charts

Spleyd

Objects by
 Constellation

Objects by Number 64
Objects by Type 71
Objects by Name 76
Messier Objects 78
Caldwell Objects 81
Stars by Name 84
Brightest Stars 86
Closest Stars 87
Mythology 88
Bimonthly Sky Charts 92
Meteor Showers 105
Sun, Moon and Planets 106
Observing Considerations 113
Expanded Glossary 115
The 88 Constellations, plus 126
Chart Reference

Introduction

The night sky was charted by western civilization a few thousands years ago to bring order to the random splatter of stars, and in the hopes, as a piece of the puzzle, to help "understand" the forces of nature. The stars and their constellations were imbued with the beliefs of those times, which have become mythology.

The oldest known celestial atlas is in the book, Almagest, by Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived in Alexandria from 90 to 160 AD . The Almagest is the earliest surviving astronomical treatise-a 600-page tome. The star charts are in tabular form, by constellation, and the locations of the stars are described by the mythological part that they represent. For example, Castor, in Gemini, is described as, "The star on the head of the advance twin." This atlas was built on the foundations of traditions.

One of the first substantive celestial atlases featuring charts of stars was the 1603, Uranometria (roughly translates as, Measuring the Sky) by the German, Johann Bayer. His 51 charts included drawings of the mythological figures and it was Bayer who assigned the lower-case Greek letters to identify many stars.

The goal of celestial atlases has not changed over the centuries. They provide a charting of the night sky to serve as reference.

Celestial Atlas Menor was specifically designed for those wanting to enjoy the exploration of the heavens with their eyes, binoculars or a telescope. It's for both beginners and more experienced observers. The magnitude limit of the charted stars is about +5.5 which is the limit of the naked eye, but the magnitude limit for celestial objects is about +11.5 , which is the limit for a 6 -inch to 8 -inch diameter telescope-popular-size scopesunder reasonably dark skies.

Now, the intent of this atlas was not to provide a step-by-step introduction to exploring the heavens but as an easy-to-use and intuitive guide, hence its organization and placement of pages as well as use of tabs. And, although the designations of the main charts might seem counterintuitive at first, you will find that it facilitates using the charts, while the numbers teach a little about the celestial coordinate system and movement of the heavens. Beginners will find explanations of terms and concepts throughout the atlas, and especially in the Glossary.

Features of this celestial atlas include:

- A standard and convenient size for clipboards and one's lap.
- Tabs for the charts and listing of objects, smartly placed pages and cross-reference lists.
- Comfortable chart scale that keeps whole constellations on a single chart.
- Simplified constellation outlines for easy identification of patterns in the sky.
- Detailed close-up charts of deep sky objects (clusters of stars, nebulae and galaxies) hot-spots as well as other significant areas.
- 1,370 deep sky objects and 360 double stars (two stars-one often orbits the other) plotted with observing information for every object.
- Inclusion of many "famous" celestial objects, even though they are beyond the reach of a 6 to 8 -inch diameter telescope.
- Expanded glossary to define and/or explain terms and concepts.
- Black stars on a white background, a preferred format for star charts.

Celestial atlases do not plot the position of the planets because they move through the constellations. But, the planets are always on or near the path on the charts labeled, "Ecliptic." The brighter planets, especially Venus and Jupiter, can cause confusion to those first learning the night sky because they might be mistaken for stars. Please visit my site, whatsouttonight.com (or others), to find the location and magnitude of the naked-eye planets.

The Earth slowly wobbles in a great circle on its axis, called precession. This results in the coordinates of the stars and all celestial objects to slowly change over time. This atlas has all coordinates set for the future year 2025, but the coordinates will be more than adequate to find these objects for a good 50 years beyond this date.

Unfortunately, the United States is one of the few remaining countries in the world to stick with English units of measurement. This atlas is geared mostly towards this crowd, to those who are less familiar with the near-universal metric system of measurement.

This atlas is mostly the work of me, Ken Graun. All of the charts were drawn by hand in drawing programs-every single star, line, letter and number. I like to improve my products, so if you have any corrections or suggestions, please contact me.

I encourage owners of this atlas to copy any pages for your nightly pursuits, and to share with small groups. Also, you might want to take the book apart and put it in a 3-ring binder for added convenience. Please contact me if you would like to distribute pages free-of-charge for large events because the stars are for everyone!

Ken Graun

July, 2015
Vail, Arizona
Contact information:
(520) 743-3200
ken@kenpress.com
whatsouttonight.com

Constellations by Chart

Constellation	Abbr.	Charts	Page	Constellation	Abbr.	Charts	Page
ANDROMEDA	And	NCP, 23N, 2 N	15	LACERTA	Lac	NCP, 23N	8
ANTLIA	Ant	11E, 11S, SCP	28	LEO	Leo	11N, 11 E	12
APUS	Aps	14S, SCP	32	LEO MINOR	LMi	NCP, 11N, 11E	12
AQUARIUS	Aqr	23E, 20E, 23S	16	LEPUS	Lep	5E, 5S	22
AQUILA	Aql	20N, 20E, 20S	17	LIBRA	Lib	14E, 14S	27
ARA	Ara	20S, 17S, SCP	26	LUPUS	Lup	17S, 14S	27
ARIES	Ari	2N, 2 E	15	LYNX	Lyn	NCP, ${ }^{\text {8N }}$	13
AURIGA	Aur	5N, 5E	14	LYRA	Lyr	20N, 20 E	9
BOOTES or BOÖTES	Boo	14N, 14E	11	MENSA	Men	5S, SCP	32
CAELUM	Cae	5E, 5S	30	MICROSCOPIUM	Mic	20S, SCP	25
CAMELOPARDALIS	Cam	NCP, 5 N	14	MONOCEROS	Mon	5E, 8E	21
CANCER	Cnc	8N, 8E	13	MUSCA	Mus	11S, 14S, SCP	28
CANES VENATICI	CVn	NCP, 14N, 11N	11	NORMA	Nor	17S, SCP	26
CANIS MAJOR	CMa	8E, 8S	21	OCTANS	Oct	SCP	32
CANIS MINOR	CMi	8N, 8E	21	OPHIUCHUS	Oph	17E	18
CAPRICORNUS	Cap	20E, 20S	17	ORION	Ori	5 E	22
CARINA	Car	11S, 8S, SCP	28	PAVO	Pav	20S, SCP	25
CASSIOPEIA	Cas	NCP, 23N, 2 N	15	PEGASUS	Peg	23N, 23E	8
CENTAURUS	Cen	14S, 11S, SCP	27	PERSEUS	Per	NCP, 5N, 2N	15
CEPHEUS	Cep	$\overline{\text { NCP, }}$ 23N, 20N	8	PHOENIX	Phe	2S, SCP	31
CETUS	Cet	2E, 2S	23	PICTOR	Pic	5S, SCP	30
CHAMAELEON	Cha	11S, SCP	32	PISCES	Psc	23N, 2N, 23E, 2E	16/23
CIRCINUS	Cir	14S, SCP	27	PISCIS AUSTRINUS	PsA	23E, 23S	24
COLUMBA	Col	5E, 5S	30	PUPPIS	Pup	8E, 8S	29
COMA BERENICES	Com	14N, 14E	11	PYXIS	Pyx	8E, 8S	29
CORONA AUSTRALIS	CrA	20S, 17S	25	RETICULUM	Ret	5S, 2S, SCP	30
CORONA BOREALIS	CrB	17N, 14N, 17E	10	SAGITTA	Sge	20N, 20 E	9
CORVUS	Crv	14E, 11E	20	SAGITTARIUS	Sgr	20E, 17E, 20S, 17S	25-26
CRATER	Crt	11E, 11S	20	SCORPIUS	Sco	17S	26
CRUX	Cru	14S, SCP	27	SCULPTOR	Scl	23E, 2E, 23S, 2S	24
CYGNUS	Cyg	NCP, 20N, 20E	9	SCUTUM	Sct	20E, 17E	17
DELPHINUS	Del	20N, 20E	9	SERPENS ${ }^{1}$ (Caput \& Cauda)) Ser	17 E	18
DORADO	Dor	5S, SCP	30	SEXTANS	Sex	11 E	20
DRACO	Dra	NCP, 17N, 14N	7	TAURUS	Tau	5N, 5E	22
EQUULEUS	Equ	20N, 20E	17	TELESCOPIUM	Tel	20S, 17S	25
ERIDANUS	Eri	5E, 2E, 5S, $\underline{\text { 2S }}$	30-31	TRIANGULUM	Tri	$\underline{\mathbf{2 N},} \mathbf{2 E}$	15
FORNAX	For	2E, 2S, SCP	31	TRIANGULUM AUSTRALE	TrA	17S, SCP	26
GEMINI	Gem	8N, 5N, 8E, 5E	21	TUCANA	Tuc	$\underline{23 S}$, SCP	24
GRUS	Gru	23S, SCP	24	URSA MAJOR	UMa	NCP, 14N, 11N	12
HERCULES	Her	17N, 17E	10	URSA MINOR	UMi	NCP, 14N	7
HOROLOGIUM	Hor	5S, 2S, SCP	30	VELA	Vel	11S, 8S, SCP	28-29
HYDRA	Нуa	8N, 14E, 11E, 8E	19-21	VIRGO	Vir	14 E	19
HYDRUS	Hyi	2S, SCP	31	VOLANS	Vol	85, SCP	29
INDUS	Ind	23S, 20S, SCP	25	VULPECULA	Vul	20N, 20 E	9

[^0]| Greek | $\boldsymbol{\alpha}$ alpha | $\boldsymbol{\mathcal { E }}$ epsilon | \mathbf{l} iota | $\boldsymbol{\nu}$ nu | $\boldsymbol{\rho}$ rho | $\boldsymbol{\varphi}$ phi |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Alphabet | $\boldsymbol{\beta}$ beta | $\boldsymbol{\zeta}$ zeta | $\boldsymbol{\kappa}$ kappa | $\boldsymbol{\xi}$ xi | $\boldsymbol{\sigma}$ sigma | $\boldsymbol{\chi}$ chi |
| | $\boldsymbol{\gamma}$ gamma | $\boldsymbol{\eta}$ eta | $\boldsymbol{\lambda}$ lambda | $\mathbf{0}$ omicron | $\boldsymbol{\tau}$ tau | $\boldsymbol{\psi}$ psi |
| | $\boldsymbol{\delta}$ delta | $\boldsymbol{\theta}$ theta | $\boldsymbol{\mu}$ mu | $\boldsymbol{\pi}$ pi | \mathbf{v} upsilon | $\boldsymbol{\omega}$ omega |

Overview of Charts

The heart of any celestial atlas is its charts. On the next 31 pages are 41 charts, detailing the whole celestial sphere. There are 2 charts covering the celestial poles, 24 main charts and 15 close-up charts. The 24 main charts are divided into northern, equatorial and southern sections. Each section's Right Ascensions are in descending order so the chart's pages join together, allowing constellations to flow off one page and on to the next.

For explanations of terms, see the Glossary

Coordinate Grids \& Reference Lines

Coordinate grids are overlayed on every chart. For the 24 main charts, the Right Ascension is noted along the tops and bottoms with Declination noted along the sides. The stars move from east to west in the sky, from lower to higher Right Ascensions. The Ecliptic and Galactic Center lines are also indicated.

Celestial Pole Charts

The two celestial pole charts are at a smaller scale than the 24 main charts in order to show more constellations and stars around the poles. Fewer deep sky objects are plotted on these charts compared to the main charts.

Names of Constellations and Stars

The names of constellations are in UPPERCASE letters, except when their 3-letter abbreviations are used. The names of stars are italicized.

Magnitude of Stars and Objects

The 24 main charts indicate stars as faint as magnitude 6 , which is the limit of the naked eye under dark skies. The close-up charts go fainter.

The magnitude limit of the deep sky objects averages 11.5 , the limit of a 6 to 8 -inch diameter telescope under dark skies. The close-up charts go fainter. The section, "Objects by Constellation," provides magnitudes for all plotted objects.

Object Symbols, Designations and Scale

Each category of object (Cluster, Globular Cluster, Planetary Nebula, Nebula and Galaxy) has an identifying symbol-see legends on charts.

A 2 to 4 digit number next to an object indicates its NGC designation, that is, its New General Catalogue designation. An IC in front of a number indicates the supplemental Index Catalogue to the NGC catalogue. All Messier objects start with an M and because of their popularity, they are bolded. There are other designations, like Cr , Tr and PK , and information about these designations can be found in the Glossary.

NGC numbers are assigned to objects in order of Right Ascension, so these numbers increase from right to left.

Most objects are much smaller than their symbols, however, the actual size and shape of large objects are drawn to scale.

Explanations and examples of objects can be found in the Glossary.

Designations of Stars

Other than a name, stars may be designated with a Bayer letter (mostly Greek letters but some Roman letters, too) or a number, called a Flamsteed number. Stars lacking these designations may be indicated with the double-letter designation for a variable star, the Bright Star Catalogue designation (HR) or Henry Draper Catalogue designation (HD).

John Flamsteed was not entirely consistent in his assignment of designations. You will find instances of faint stars with Flamsteed numbers near much brighter stars without Flamsteed numbers.

Double Stars \& their Designations

A double star is a star that "casually" looks like one star but separates into two or more stars with sufficient magnification. All double stars are indicated by a thin line drawn through their centers. The orientation of the thin line has no significance. In this celestial atlas, every double star has a designation for reference to its observing information in the section, "Objects by Constellation." However, the older, traditional designations of some double stars, which identified specific double star catalogues (designations starting with $\Sigma, \mathrm{O} \Sigma, \beta, \Delta$, etc.), have not been used. Instead, the HR (Bright Star Catalogue) and HD (Henry Draper Catalogue) stellar catalogue designations are used to provide greater consistency and avoid confusion by using additional symbols.

Variable Stars

A variable star is a star that changes brightness, usually cyclically, over a period of a few days to years. The size of the inner and outer circles denoting variable stars approximate the magnitude change. The emphasis of this celestial atlas is on deep sky objects and double stars, so only the brightest variable stars are described.

Red Stars

Red stars are pretty to observe. Most of them are faint variable stars. The ones noted in this celestial atlas are some of the brightest. To locate the red stars, it is easiest to find their designation and coordinates under their own heading in, "Objects by Constellation."

Telrad Reticle "Finderscope"

The Telrad is a popular pointing devise used on telescopes, so its reticle pattern is provided. See Telrad in the Glossary for more information.

Binocular and Telescope Field-of-View

A 5° circle, representing the arc-angle, field-of-view for typical binoculars is indicated on the main charts as well as a 1° arc-angle, field-ofview for a "regular" telescope eyepiece yielding a magnification of 50x. Any telescope using an eyepiece that will yield a magnification of about 50 x will provide a field-of-view with at least a diameter of 1°, which is two Moon diameters. See Telescope Magnification in the Glossary.

Close-up Charts

The close-up charts provide detailed charting of specific objects, areas of interest or congested areas. The magnitude of the stars and objects go fainter than in the main charts. Charts A-14 and A-14R are provided for those who want to manually find the set of Messier galaxies in the Virgo Cluster, a practice sometimes conducted during Messier marathons. Chart A-14R is a mirror-reverse image of chart A-14 for use with telescopes equipped with a 90° diagonal (refractors and SCTs). Although the 90° diagonal allows for comfortable viewing, it provides a mirror-reverse image of the sky. Reverse images are acceptable in astronomy because we are just looking at stars.

Locating Specific Stars \& Objects

Locating a specific star or object on the charts may not always be easy. To facilitate finding them, the section, "Objects by Constellation" serves as a master list with the three supporting sections, "Objects by Number," "Objects by Type" and "Objects by Name" providing cross references. Once the constellation for an object is identified, to find it on the charts is a simple matter of looking it up on the master list and using its coordinates to nail it down.

NGC numbers are assigned to objects in order of Right Ascension, so these numbers increase from right to left.

Objects by Constellation

KEYs

$$
\begin{array}{cc}
\text { Class } & \text { Dimension in Sky } \\
\text { of Object } & \text { Single number } \\
\text { For galaxies } & \text { Expates a diameter. } \\
\text { and nebulae. } & \text { © Degreesed in Arc } \\
\text { See below. } & \text { or "Seconds. }
\end{array}
$$

This section provides observing information on every plotted deep sky object, double star and other objects of interest, including a few uncharted objects.

For an explanation of terms and abbreviations, see the Glossary.

Galaxies

\mathbf{S}, \mathbf{E} and \mathbf{I} after a Galaxy designates its type or shape, that is, Spiral, Elliptical or Irregular, respectively. See Galaxies in the Glossary $\overline{\text { for more information. }}$

Nebulae

$\mathbf{E m}, \mathbf{R}$ and \mathbf{B} after a Nebula designates its source of illumination, that is, Emission, Reflection or Bright, respectively. See Nebula in the Glossary for more information.

Listed Order of Deep Sky Objects (DSOs) and Stars

In the lists of DEEP SKY OBJECTs, objects with names are listed first followed by catalogues, from the brightest catalogue to the faintest. So, the Messier objects are listed before the NGC objects with IC objects following. Objects with other catalogue designations are at the bottom of the DEEP SKY OBJECTs lists. For the lists of DOUBLE, variable and RED STARs, stars with names are listed first, followed by those with Bayer letters and then Flamsteed numbers. The order of a few listings of stars may seem wrong, but they are listed in their catalogue order. So, for the RED STARs in Cygnus, RS does come before LW.

Clusters and Globular Clusters

Throughout this celestial atlas, an Open Cluster, that is, a grouping of several to hundreds of stars, is referred to simply as a Cluster. Globular Clusters, which are groupings of thousands of stars, are always referred to as a "Globular Cluster" or "Globular" to distinguish them from Clusters. See Cluster in the Glossary for more information.

Magnitudes of Objects

The average magnitude limit of deep sky objects is 11.5 , the limit of a 6 to 8 -inch diameter telescope under dark skies. The close-up charts go fainter. Although the magnitude of stars can be measured with certainty, deep sky objects are not pinpoints of light, so their magnitudes are harder to ascertain. For this reason, you will find that the magnitudes for deep sky objects serve best as a guide. When observing these objects, some will be easier or harder to see than their magnitude indicates. Magnitudes listed with a long dash are faint and/or have not been quantified.

Arc Sizes of Objects \& Telescope View

The size that every object extends in the sky is indicated in arc degrees, minutes or seconds. It takes some observing experience to get a "feel" for the size of objects when looking through a telescope especially since the magnification can be changed easily. The Moon is a popular gauge because its diameter extends about 30 arc minutes (30^{\prime} or $1^{1} 2^{\circ}$). Most telescope eyepieces that provide a magnification of 50 x will also provide a field-of-view of 1° in diameter, and an eyepiece providing a magnification of 100 x will provide a field-of-view of $1 / 2^{\circ}$ in diameter.

Objects by Constellation

variable star

η Aquilae. m3.5-4.4, Period=7.177 days, [19h54m, $\left.+1^{\circ} 04^{\prime}\right]$. red star
V Aquliae. m6.6-8.4, Period=353 days, [19n06m, $-5^{\circ} 39^{\prime}$].

ARA
[Ara • Arae • 20S, 17S, 14S, SCP] deep sky objects

NGC 6188 Nebula. See NGC 6193, below.
NGC 6193 Cluster. m5.2, 15', 15*, [16h $\left.42 \mathrm{~m},-48^{\circ} 50^{\prime}\right]$.
The nebula, NGC 6188 surrounds this cluster (19x12').
NGC 6200 Cluster. m7.4, 12', 40*, [16h $\left.46 \mathrm{~m},-47^{\circ} 30^{\prime}\right]$.
NGC 6204 Cluster. $m 8.2,5^{\prime}, 45^{\star},\left[16 h 48 m,-47^{\circ} 04^{\prime}\right]$.
NGC 6208 Cluster. $m 7.2,15^{\prime}, 60^{*}$, [16h51m, $\left.-53^{\circ} 46^{\prime}\right]$.
NGC 6215 Galaxy (S). m10.9, 3x2', [16h53m, $\left.-59^{\circ} 02^{\prime}\right]$.
NGC 6221 Galaxy (S). m10.0, $5 \times 3^{\prime}$, [16h55m, $\left.-59^{\circ} 16^{\prime}\right]$.
NGC 6250 Cluster. m5.9, $7^{\prime}, 60^{\star},\left[17 \mathrm{~h} 00 \mathrm{~m},-45^{\circ} 58^{\prime}\right]$.
NGC 6300 Galaxy (S). m10.1, 5x3', [17n19m, $\left.-62^{\circ} 51^{\prime}\right]$.
NGC 6326 Planetary Nebula. $m 11,9^{\prime \prime}$, [17n23m, $\left.-51^{\circ} 47^{\prime}\right]$.
NGC 6352 Globular Cluster. $\mathrm{m} 8.0,11^{\prime}$, [17h27m, $\left.-48^{\circ} 27^{\prime}\right]$.
NGC 6362 Globular Cluster. m7.7, 14', [17n35m, $\left.-67^{\circ} 04^{\prime}\right]$.
NGC 6397 Globular Cluster. m5.5, 22', [17h43m, $-53^{\circ} 41^{\prime}$].
IC 4651 Cluster. $m 6.9,12^{\prime}, 80^{*}$, [17h27m, $\left.-49^{\circ} 57^{\prime}\right]$.
DOUBLE STARS
γ Arae. m3.3/10.2, Sep=17.8", [17h28m, $\left.-56^{\circ} 24^{\prime}\right]$.
HR 6416. $\mathrm{m} 5.5 / 8.6$, Sep=10.0", [17n21m, $\left.-46^{\circ} 40^{\prime}\right]$.

> ARIES $\left[\begin{array}{l}\text { Ari } \cdot \text { Arietis } \cdot \underline{2 N}, \underline{2 E]}] \\ \text { DEEP SKY OBJECTS }\end{array}\right.$

NGC 680 Galaxy (S). m11.9, $2 \times 2^{\prime}$, [1n51m, $\left.+22^{\circ} 06^{\prime}\right]$.
NGC 691 Galaxy (S). m11.4, 3×3', [1n52m, $\left.+21^{\circ} 53^{\prime}\right]$.
NGC 772 Galaxy (S). m10.3, $7 \times 5^{\prime}$, [$\left.2 \mathrm{~h} 01 \mathrm{~m},+19^{\circ} 08^{\prime}\right]$.
NGC 821 Galaxy (E). m10.7, 3x2', [2h10m, $\left.+11^{\circ} 07^{\prime}\right]$.
NGC 972 Galaxy (S). m11.4, 3x2', [2h36m, +29으'].
NGC 1156 Galaxy (I). m11.7, $3 \times 3^{\prime}$, [$\left.3 \mathrm{~h} 01 \mathrm{~m},+25^{\circ} 20^{\prime}\right]$.
double stars
Mesartim (γ). m4.5/4.6, Sep=7.5", [1n55m, +19ㅇํ $\left.5^{\prime}\right]$.
ε Arietis. $m 4.6 / 4.9, \mathrm{Sep}=1.5^{\prime \prime},\left[3 \mathrm{~h} 01 \mathrm{~m},+21^{\circ} 26^{\prime}\right]$.
λ Arietis. $\mathrm{m} 4.8 / 6.7, \mathrm{Sep}=37^{\prime \prime},\left[1 \mathrm{n} 59 \mathrm{~m},+23^{\circ} 43^{\prime}\right]$.
1 Arietis. $m 5.9 / 7.0$, Sep $=2.9^{\prime \prime},\left[1 n 52 \mathrm{~m},+22^{\circ} 24^{\prime}\right]$.
14 Arietis. $m 5.0 / 8.0, \operatorname{Sep}=107^{\prime \prime},\left[2 h 11 \mathrm{~m},+26^{\circ} 04^{\prime}\right]$.
33 Arietis. $m 5.3 / 9.6, \operatorname{Sep}=29^{\prime \prime},\left[2 h 42 m,+27^{\circ} 10^{\prime}\right]$.

AURIGA
 [Aur • Aurigae - 5N, 5E] deep sky objects

M36 Cluster. m6.0, 12', 60^{*}, [5h38m, $\left.+34^{\circ} 09^{\prime}\right]$.
M37 Cluster. m5.6, 24', 150*, [5h54m, +32³3'].
M38 Cluster. m6.4, 21', 100*, [5h30m, +3551'].
NGC 1664 Cluster. m7.6, 18', 40*, [4h53m, $+43^{\circ} 43^{\prime}$ '].
NGC 1778 Cluster. $m 7.7,7^{\prime}, 25^{*}$, [$\left.5 \mathrm{~h} 10 \mathrm{~m},+37^{\circ} 03^{\prime}\right]$.
NGC 1857 Cluster. $m 7,6^{\prime}, 40^{*}$, [$\left.5 \mathrm{~h} 22 \mathrm{~m},+39^{\circ} 22^{\prime}\right]$.
NGC 1893 Cluster. $m 7.5,10^{\prime}, 60^{\star}$, [5h24m, $+33^{\circ} 25^{\prime}$].
Known as the Letter Y Cluster.
NGC 1907 Cluster. $m 8.2,7^{\prime}, 30^{*},\left[5 h 30 \mathrm{~m},+35^{\circ} 20^{\prime}\right]$.

NGC 1931 Nebula/Cluster. $m 10,5^{\prime}, 24^{*}$, [5h33m, $\left.+34^{\circ} 15^{\prime}\right]$.
Miniature "Orion Nebula" with corresponding "Trapezium."
NGC 2281 Cluster. m5.4, 15', 30*, [6h50m, $\left.+41^{\circ} 02^{\prime}\right]$.
IC 405 Flaming Star Nebula (B). m10.0, 30x19', [5h18m, $\left.+34^{\circ} 18^{\prime}\right]$.
Simeis 147 Supernova Remnant. Photographic object, $3.3 \times 3.3^{\circ}$,
[$5 \mathrm{~h} 42 \mathrm{~m},+28^{\circ} 01^{\prime}$]. About 40,000 years old.
DOUBLE STARS
$\boldsymbol{\theta}$ Aurigae. $\mathrm{m} 2.6 / 7.2$, Sep $=3.5^{\prime \prime},\left[6 \mathrm{~h} 01 \mathrm{~m},+37^{\circ} 13^{\prime}\right]$.
ψ^{5} Aurigae. m5.2/8.6, Sep=30.1", [6h49m, $\left.+43^{\circ} 33^{\prime}\right]$.
4 Aurigae. $\mathrm{m} 5.0 / 8.0$, Sep $=4.6^{\prime \prime}$, $\left[5 \mathrm{~h} 01 \mathrm{~m},+37^{\circ} 56^{\prime}\right]$.
14 Aurigae. $m 5 / 7.3$, Sep=14.1", [5h17m, $\left.+32^{\circ} 43^{\prime}\right]$.
41 Aurigae. m6.2/6.9, Sep=7.6", [6h14m, $\left.+48^{\circ} 42^{\prime}\right]$.

RED STARs

S Aurigae. m8.2-14.0, Period=590 days, [5h29m, $\left.+34^{\circ} 10^{\prime}\right]$.
UU Aurigae. m5.3-6.5, Period=235 days//rregular,
[$\left.6 \mathrm{~h} 38 \mathrm{~m},+38^{\circ} 26^{\prime}\right]$.

BOOTES

[Boo - Bootis • NCP, 17N, $\underline{14 N}, 17 \mathrm{E}$ 14E]
deep sky objects
NGC 5248 Galaxy (S). $m 10.2,4 \times 2^{\prime}$, [13n39m, $\left.+8^{\circ} 45^{\prime}\right]$.
NGC 5466 Globular Cluster. $\mathrm{m9} .1,34^{\prime}$, [14h07m, $\left.+28^{\circ} 25^{\prime}\right]$.
NGC 5557 Galaxy (E). $m 11.1,2 \times 1^{\prime}$, [14h19m, $\left.+36^{\circ} 23^{\prime}\right]$.
NGC 5669 Galaxy (S). $m 11.3,3 \times 2^{\prime}$, [14h34m, $\left.+9^{\circ} 47^{\prime}\right]$.
NGC 5676 Galaxy (S). m11.2, 4x2', [14h34m, $\left.+49^{\circ} 21^{\prime}\right]$.
double stars
Alkalurops (μ). m4.3.7.1/, Sep=107", [15h25m, $\left.+37^{\circ} 17^{\prime}\right]$. Izar (ε). m3.3/4.7, Sep=2.6", [14h46m, +2658'].
δ Bootis. m3.6/7.9, Sep=1.7", [15h17m, $\left.+33^{\circ} 13^{\prime}\right]$.
ζ Bootis. $m 3.4 / 3.8$, Sep $=0.5^{\prime \prime},\left[14 \mathrm{~h} 42 \mathrm{~m},+13^{\circ} 37^{\prime}\right]$.
© Bootis. m4.8/7.4, Sep $=38.7^{\prime \prime}$, [14h17m, $\left.+51^{\circ} 15^{\prime}\right]$.
κ Bootis. $m 4.5 / 6.6, \operatorname{Sep}=13.5^{\prime \prime},\left[14 \mathrm{~h} 14 \mathrm{~m},+51^{\circ} 40^{\prime}\right]$.
ξ Bootis. m4.8/7.0, Sep=6.3", [14h53m, $\left.+19^{\circ} 00^{\prime}\right]$.
π Bootis. m4.9/5.8, Sep=5.5", [14n42m, $\left.+16^{\circ} 19^{\prime}\right]$.
39 Bootis. m5.7/6.1, Sep=2.9", [14h51m, $\left.+48^{\circ} 37^{\prime}\right]$.
44 Bootis. $m 4.8 / 5.7, \operatorname{Sep}=1.8^{\prime \prime}$, [15h05m, $\left.+47^{\circ} 33^{\prime}\right]$.
HR 5385. $m 5.0 / 6.8$, Sep $=6.2^{\prime \prime}$, [14n25m, $\left.+8^{\circ} 20^{\prime}\right]$.

> CAELUM
> [Cae • Caeli • 5E, 5S]
> DEEP SKY OBJECT

NGC 1679 Galaxy (S). m11.5, 3x2', [4h51m, $-31^{\circ} 55^{\prime}$]. double star
γ Caeli. $m 4.6 / 8.1$, Sep $=3.2^{\prime \prime},\left[5 h 05 m,-35^{\circ} 27^{\prime}\right]$.

CAMELOPARDALIS

[Cam • Camelopardalis • NCP, 8N, 5N, 2N] deep sky objects
Kemble's Casade. Twenty m8 stars in a 2.5° line. Middle is $m 5$ star at: [$4 \mathrm{~h} 00 \mathrm{~m},+63^{\circ} 09^{\prime}$].
NGC 1501 Planetary Nebula. $m 11.5,52^{\prime \prime}$, [$\left.4 \mathrm{n} 09 \mathrm{~m},+60^{\circ} 59^{\prime}\right]$.
NGC 1502 Cluster. m5.7, $7^{\prime}, 45^{*}$, [$\left.4 \mathrm{~h} 10 \mathrm{~m},+62^{\circ} 23^{\prime}\right]$.
NGC 2146 Galaxy (S). m10.6, 5x3', [6h23m, $\left.+78^{\circ} 21^{\prime}\right]$.
NGC 2336 Galaxy (S). $\mathrm{m} 10.4,5 \times 3^{\prime}$, [7n31m, $\left.+80^{\circ} 08^{\prime}\right]$.
NGC 2403 Galaxy (S). m8.5, 16x8', [7h39m, $\left.+65^{\circ} 33^{\prime}\right]$.
NGC 2655 Galaxy (S). $m 10.1,5 \times 4^{\prime}$, [8h59m, $\left.+78^{\circ} 08^{\prime}\right]$.

Objects by Constellation

IC 342 Galaxy (S). m9.7, 20x19', [3n49m, +68ㅇ $\left.10^{\prime}\right]$. St 23 Cluster. m7.5+, 17', 25^{*}, [3h18m, $\left.+60^{\circ} 12^{\prime}\right]$. double stars
β Camelopardalis. $m 4.1 / 7.4, \operatorname{Sep}=83^{\prime \prime},\left[5 n 06 m,+60^{\circ} 29^{\prime}\right]$.
1 Camelopardalis. $m 5.8 / 6.8$, Sep $=11^{\prime \prime}$, $\left[4 h 34 m,+53^{\circ} 58^{\prime}\right]$.
HR 1686. $m 5.0 / 9.2$, Sep=26", [$\left.5 \mathrm{~h} 27 \mathrm{~m},+79^{\circ} 15^{\prime}\right]$.
HR 4893. $m 5.3 / 5.9$, Sep=22", [12h50m, $\left.+83^{\circ} 17^{\prime}\right]$.

CANCER

[Cnc - Cancri • 8N, 8E, A-5] deep sky objects M44 Praesepe or Beehive (Cluster). m3.1, 1.6º 50^{*}, [$8 \mathrm{~h} 42 \mathrm{~m},+19^{\circ} 35^{\prime}$]. Praesepe means "manger" or "hive." M67 King Cobra (Cluster). m6.9, 30', 200*, [8h53m, $\left.+11^{\circ} 42^{\prime}\right]$.
NGC 2513 Galaxy (E). $m 11.6,3 \times 2^{\prime}$, [$\left.8 \mathrm{~h} 04 \mathrm{~m},+9^{\circ} 21^{\prime}\right]$.
NGC 2624 Galaxy (S). m14.7, 46x28", [8h40m, +19038']. A-5
NGC 2625 Galaxy (S). m15.3, 31x26", [$\left.8840 \mathrm{~m},+19^{\circ} 38^{\prime}\right]$. A-5
NGC 2637 Galaxy (S). m15.7, 31x26", [8h43m, +19³6']. A-5
NGC 2647 Galaxy (E). m15.1, 43x34", [8h44m, $+19^{\circ} 34^{\prime}$ ']. A-5
NGC 2775 Galaxy (S). m10.1, $5 \times 4^{\prime}$, [$\left.9 \mathrm{~h} 12 \mathrm{~m},+6^{\circ} 56^{\prime}\right]$.
DOUBLE StARs
ζ Cancri. $m 5.3 / 6.0$, Sep=5.9", [$\left.8 \mathrm{~h} 14 \mathrm{~m},+17^{\circ} 34^{\prime}\right]$.
Triple. The brighter is also a double just 1 " apart.
ı Cancri. $m 4.1 / 6.0$, Sep $=31^{\prime \prime}$, [$\left.8 \mathrm{~h} 48 \mathrm{~m},+28^{\circ} 40^{\prime}\right]$.
The Spring Albireo.
σ^{4} Cancri (66 Cancri). m5.9/8.1, Sep=4.5", [9h03m, $\left.+32^{\circ} 09^{\prime}\right]$.
φ^{2} Cancri. m6.2/6.2, Sep=5.2", [8h28m, +2651'].
57 Cancri. $m 5.4 / 5.7$, Sep $=1.5^{\prime \prime},\left[8856 m,+30^{\circ} 29^{\prime}\right]$.

CANES VENATICI

[CVn • Canum Venaticorum • NCP, 14N, 11N, 14E, 11E] DEEP SKY OBJECTs
M3 Globular Cluster. m6.2, 16', [13n43m, +28º 15^{\prime}].
M51 Whirlpool Galaxy (S). m8.1, 11×8', [13h31m, +47004'].
M63 Sunflower Galaxy (S). m8.6, 12x8', [13h17m, $\left.+41^{\circ} 54^{\prime}\right]$.
M94 Croc's Eye Galaxy (S). m8.1, 11x9', [12h52m, $\left.+40^{\circ} 59^{\prime}\right]$.
M106 Galaxy (S). m8.3, 18x8', [12h20m, $\left.+47^{\circ} 10^{\prime}\right]$.
NGC 4111 Galaxy (S). m10.7, 2x1', [12h08m, $\left.+42^{\circ} 56^{\prime}\right]$.
NGC 4138 Galaxy (S). m11.4, 3x2', [12h11m, $\left.+43^{\circ} 33^{\prime}\right]$.
NGC 4143 Galaxy (S). $m 11.5,3 \times 2^{\prime},\left[12 \mathrm{~h} 11 \mathrm{~m},+42^{\circ} 24^{\prime}\right]$.
NGC 4145 Galaxy (S). $m 11.3,5 \times 2^{\prime}$, [12h11m, $\left.+39^{\circ} 49^{\prime}\right]$.
NGC 4151 Galaxy (S). m10.8, 6x4', [12h12m, $\left.+39^{\circ} 16^{\prime}\right]$.
NGC 4214 Galaxy (I). m9.8, $8 \times 6^{\prime}$, [12h17m, $\left.+36^{\circ} 11^{\prime}\right]$.
NGC 4217 Galaxy (S). m11.2, 6x2', [12h17m, $\left.+46^{\circ} 57^{\prime}\right]$.
NGC 4220 Galaxy (S). m11.3, 3x1', [12h17m, $\left.+47^{\circ} 45^{\prime}\right]$.
NGC 4242 Galaxy (S). m10.8, 5x4', [12h19m, $\left.+45^{\circ} 29^{\prime}\right]$.
NGC 4244 Galaxy (S). m10.4, 16x3', [12h19m, $\left.+37^{\circ} 40^{\prime}\right]$.
NGC 4346 Galaxy (S). $m 11.5,3 \times 1^{\prime}$, [$\left.12 \mathrm{~h} 25 \mathrm{~m},+46^{\circ} 51^{\prime}\right]$.
NGC 4395 Galaxy (S). m10.4, 4x2', [12h27m, $\left.+33^{\circ} 25^{\prime}\right]$.
NGC 4449 Galaxy (I). m9.6, 6x5', [12h29m, +4357'].
NGC 4460 Galaxy (S). $m 11.5,4 \times 1^{\prime}$, [12h30m, $\left.+44^{\circ} 44^{\prime}\right]$.
NGC 4490 Galaxy (S). m9.8, 6x3', [12h32m, $\left.+41^{\circ} 30^{\prime}\right]$.
NGC 4618 Galaxy (S). $m 10.8,4 \times 3$ ', [12h43m, $\left.+41^{\circ} 01^{\prime}\right]$.
NGC 4631 Galaxy (S). $\mathrm{m} 9.2,14 \times 3^{\prime},\left[12 n 43 m,+32^{\circ} 24^{\prime}\right]$.
NGC 4656 Galaxy (S). $\mathrm{m} 10.5,7 \times 1^{\prime},\left[12 \mathrm{~h} 45 \mathrm{~m},+32^{\circ} 02^{\prime}\right]$.
NGC 4800 Galaxy (S). $m 11.5,2 \times 1^{\prime},\left[12 h 56 m,+46^{\circ} 24^{\prime}\right]$.
NGC 5005 Galaxy (S). m9.8, $5 \times 3^{\prime}$, [13h12m, $\left.+36^{\circ} 56^{\prime}\right]$.
NGC 5033 Galaxy (S). $m 10.2,11 \times 6^{\prime}$, [13h15m, $\left.+36^{\circ} 27^{\prime}\right]$.

NGC 5350 Galaxy (S). m11.5, 3x2', [13h54m, $\left.+40^{\circ} 14^{\prime}\right]$.
NGC 5353 Galaxy (S). m11.0, 3x2', [13h55m, $+40^{\circ} 10^{\prime}$].
NGC 5354 Galaxy (S). m11.4, 3x1', [13h55m, $\left.+40^{\circ} 11^{\prime}\right]$.
NGC 5371 Galaxy (S). m10.6, 4x3', [13h57m, $\left.+40^{\circ} 20^{\prime}\right]$.
NGC 5377 Galaxy (S). m11.3, 4x2', [13h57m, $\left.+47^{\circ} 07^{\prime}\right]$.
NGC 5383 Galaxy (S). $m 11.5,3 \times 2$ ', [13h58m, $\left.+41^{\circ} 43^{\prime}\right]$.
NGC 5395 Galaxy (S). m11.5, 3x2', [14h00m, $\left.+37^{\circ} 18^{\prime}\right]$.
double stars
Cor Caroli ($\boldsymbol{\alpha}$). $\mathrm{m} 2.9 / 5.5$, Sep $=19.33^{\prime \prime}$. [12h57m, $\left.+38^{\circ} 11^{\prime}\right]$.
25 Canum Venaticorum. $m 4.8 / 6.8$, Sep $=1.8^{\prime \prime}$. [$\left.13 \mathrm{~h} 39 \mathrm{~m},+36^{\circ} 10^{\prime}\right]$.
RED STAR
Y Canum Venaticorum. m4.8-6.5, Period=158 days,
[12h46m, $\left.+45^{\circ} 18^{\prime}\right]$.

CANIS MAJOR
[CMa • Canis Majoris • 8E, 5E, 8S, 5S]
DEEP SKy ObJECTs

Canis Major Dwarf Galaxy (I). m—, 12x12 ${ }^{\circ}$, [Centered at $7 \mathrm{~h} 13 \mathrm{~m},-27^{\circ} 40^{\prime}$]. Discovered in 2003, it is, to date, the closest galaxy to our Milky Way Galaxy at 25,000 light years. Not plotted.
M41 Little Beehive (Cluster). m4.5, 38', 80*, [6h47m, $\left.-20^{\circ} 47^{\prime}\right]$.
NGC 2204 Cluster. m8.6, 13', 80^{*}, [$\left.6 \mathrm{~h} 17 \mathrm{~m},-18^{\circ} 40^{\prime}\right]$.
NGC 2207 Galaxy (S). m10.8, 4x3', [6h17m, $\left.-21^{\circ} 23^{\prime}\right]$.
NGC 2217 Galaxy (S). $m 10.2,5 \times 4^{\prime}$, [$\left.6 \mathrm{~h} 23 \mathrm{~m},-27^{\circ} 15^{\prime}\right]$.
NGC 2243 Cluster. m9.4, 5', 25*, [6h31m, $\left.-31^{\circ} 18^{\prime}\right]$.
NGC 2280 Galaxy (S). $m 10.5,6 \times 33^{\prime}$, [$\left.6446 m,-27^{\circ} 40^{\prime}\right]$.
NGC 2325 Galaxy (E). m11.2, 4x2', [7h04m, $\left.-28^{\circ} 44^{\prime}\right]$.
NGC 2345 Cluster. m7.7, 12', 70*, [7h09m, $\left.-13^{\circ} 13^{\prime}\right]$.
NGC 2354 Cluster. m6.5, 19', 100*, [7h15m, $\left.-25^{\circ} 44^{\prime}\right]$.
NGC 2359 Thor's Helmet (Em Nebula). m-, 7x6', [7h20m, $\left.-13^{\circ} 15^{\prime}\right]$.
NGC 2360 Cluster. m7.2, 12', 80*, [7719m, $\left.-15^{\circ} 41^{\prime}\right]$.
NGC 2362 Cluster. m4.1, $7^{\prime}, 60^{*}$, [7h20m, $-25^{\circ} 00^{\prime}$]. Nice!
NGC 2367 Cluster. m7.9, 3.5', 30*, [7h21m, $-21^{\circ} 55^{\prime}$].
NGC 2374 Cluster. m 8 , 19', 25^{*}, [7h25m, $\left.-13^{\circ} 18^{\prime}\right]$.
NGC 2380 Galaxy (S). m11.5, 2x2', [7h25m, $\left.-27^{\circ} 35^{\prime}\right]$.
NGC 2383 Cluster. m8.4, 6', 40*, [7h26m, $\left.-20^{\circ} 59^{\prime}\right]$.
IC 2165 Planetary Nebula. $m 10.6,9^{\prime \prime}$, [6h23m, $\left.-13^{\circ} 00^{\prime}\right]$.
Cr 121 Cluster. m2.6, $50^{\prime}, 20^{*}$, [$\left.6 \mathrm{~h} 57 \mathrm{~m},-24^{\circ} 45^{\prime}\right]$. Centered around o^{1} Canis Majoris.
Cr 140 Cluster. m3.5, $1^{\circ}, 30^{*}$, [7h25m, $\left.-31^{\circ} 54^{\prime}\right]$.
double stars
Adhara (ε). m1.5/7.5, Sep=7.0", [7h00m, $\left.-29^{\circ} 00^{\prime}\right]$.
Sirius ($\boldsymbol{\alpha}$). $m-1.4 / 8.5,\left[6 h 46 m,-16^{\circ} 44^{\prime}\right]$. Separation is 10.4^{4} in 2015 and grows to a maximum of $11.3^{\prime \prime}$ by 2023. Minimum separation will be $2.5^{\prime \prime}$ in 2043 . Period is 50.1 years. Extreme challenge because of the brightness of Sirius and a contrast difference of 9000 between the two stars.
μ Canis Majoris. $m 5.3 / 7.1, \operatorname{Sep}=3.2^{\prime \prime},\left[6 h 57 \mathrm{~m},-14^{\circ} 05^{\prime}\right]$.
\boldsymbol{v}^{1} Canis Majoris. $m 5.8 / 7.4, \operatorname{Sep}=17.5^{\prime \prime},\left[6 \mathrm{~h} 37 \mathrm{~m},-18^{\circ} 41^{\prime}\right]$.
145 G Canis Majoris. m5.0/5.8, Sep=26.8", [7h18m, $-23^{\circ} 22^{\prime}$]. The Winter Albireo-beautifu!! The "145" designation was assigned by Benjamin Apthorp Gould when he charted the skies of the southern hemisphere-the " G " is often omitted.
FN Canis Majoris. $m 5.4 / 9.0, \operatorname{Sep}=17.5$ ", [7h08m, $\left.-11^{\circ} 20^{\prime}\right]$.
HR 2834. $m 5.4 / 7.6$, Sep=98.5" or 1.6', [7h26m, $\left.-31^{\circ} 51^{\prime}\right]$. The $m 5.4$ star also has a $m 9.7$ companion $2.1^{\prime \prime}$ away.

Objects by Number

The objects in this section are listed by catalogue designation in alphabetical and numerical order to serve as a cross references when the constellation is unknown. The type of object and 3 -letter abbreviation of the constellation is given for each object. For more information about an object, see the corresponding entry under Objects by Constellation starting on page 40 . At the beginning of each list, the name of the cataloguer, catalogue or origin is provided.

EDWARD BARNARD
B 33 Dark Nebula. Ori
B 72 Dark Nebula. Oph
victor blanco
Blanco 1 Cluster. Scl
stefan cederblad
Ced 122 Nebula. Cen

PER COLLINDER
Cr 21 Cluster. Tri
Cr 69 Cluster. Ori
Cr 121 Cluster. CMa
Cr 135 Cluster. Pup
Cr 140 Cluster. CMa
Cr 228 Cluster. Car
Cr 232 Cluster. Car
Cr 350 Cluster. Oph
Cr 338 Cluster. Sco
Cr 394 Cluster. Sgr
Cr 399 Cluster. Vul
Cr 401 Cluster. AqI
S. G. DJORGOVSKI

Djorg 1 Globular. Sco
Djorg 2 Globular. Sgr
EUROPEAN SOUTHERN obsERVATORY
ESO 121-6 Galaxy. Pic
ESO 358-63 Galaxy. For

COLIN GUM
Gum 15 Nebula. Vel
Gum 17 Nebula. Vel
Gum 39 Nebula. Cen
Gum 41 Nebula. Cen

HAUTE-PROVENCE
HP 1 Globular. Oph
index catalogue (of ngo)
IC 239 Galaxy. And IC 342 Galaxy. Cam IC 348 Nebula/Cluster. Per
IC 405 Nebula. Aur
IC 434 Nebula. Ori IC 694 Galaxy. UMa IC 1276 Globular. Ser IC 1287 Nebula. Sct IC 1297 Planetary. CrA IC 1318 Nebula. Cyg IC 1396 Nebula. Cep IC 1459 Galaxy. Gru IC 1613 Galaxy. Cet IC 1805 Nebula/Cluster. Cas IC 1848 Nebula. Cas IC 1871 Nebula. Cas IC 1954 Galaxy. Hor IC 2003 Planetary. Per IC 2006 Galaxy. Eri IC 2035 Galaxy. Hor IC 2118 Nebula. Eri IC 2165 Planetary. CMa
IC 2177 Nebula. Mon
IC 2391 Cluster. VeI
IC 2395 Cluster. VeI
IC 2448 Planetary. Car
IC 2469 Galaxy. Pyx
IC 2488 Cluster. Vel
IC 2501 Planetary. Car
IC 2553 Planetary. Car
IC 2581 Cluster. Car
IC 2602 Cluster. Car
IC 2621 Planetary. Car
IC 2714 Cluster. Car
IC 2872 Nebula. Cen
IC 2944 Cluster. Cen
IC 2948 Nebula. Cen
IC 3370 Galaxy. Cen
IC 3896 Galaxy. Cen
IC 4191 Planetary. Mus
IC 4296 Galaxy. Cen
IC 4329 Galaxy. Cen
IC 4406 Planetary. Lup
IC 4444 Galaxy. Lup
IC 4499 Globular. Aps
IC 4592 Nebula. Sco
IC 4593 Planetary. Her
IC 4601 Nebula. Sco
IC 4634 Planetary. Oph
IC 4651 Cluster. Ara
IC 4662 Galaxy. Pav
IC 4663 Planetary. Sco
IC 4665 Cluster. Oph
IC 4756 Cluster. Ser

IC 4776 Planetary. Sgr
IC 4797 Galaxy. Tel
IC 4889 Galaxy. Tel
IC 4997 Planetary. Sge
IC 5052 Galaxy. Pav
IC 5067 Nebula. Cyg
IC 5105 Galaxy. Mic
IC 5117 Planetary. Cyg
IC 5146 Nebula/Cluster. Cyg
IC 5148 Planetary. Gru
IC 5181 Galaxy. Gru
IC 5201 Galaxy. Gru
IC 5217 Planetary. Lac
IC 5240 Galaxy. Gru
IC 5267 Galaxy. Gru
IC 5273 Galaxy. Gru
IC 5325 Galaxy. Phe
IC 5328 Galaxy. Phe
IC 5332 Galaxy. ScI
Leo I (1) Galaxy. Leo

CHARLES MESSIER
M1 Supernova. Tau
M2 Globular. Aqr
M3 Globular. CVn
M4 Globular. Sco
M5 Globular. Ser
M6 Cluster. Sco
M7 Cluster. Sco
M8 Nebula. Sgr
M9 Globular. Oph
M10 Globular. Oph
M11 Cluster. Sct
M12 Globular. Oph
M13 Globular. Her
M14 Globular. Oph
M15 Globular. Peg
M16 Nebula/Cluster. Ser
M17 Nebula/Cluster. Sgr
M18 Cluster. Sgr
M19 Globular. Oph
M20 Nebula/Cluster. Sgr
M21 Cluster. Sgr
M22 Globular. Sgr
M23 Cluster. Sgr
M24 Milky Way Patch. Sgr
M25 Cluster. Sgr
M26 Cluster. Sct
M27 Planetary. Vul
M28 Globular. Sgr
M29 Cluster. Cyg
M30 Globular. Cap
M31 Galaxy. And
M32 Galaxy. And

M33 Galaxy. Tri
M34 Cluster. Per
M35 Cluster. Gem
M36 Cluster. Aur
M37 Cluster. Aur
M38 Cluster. Aur
M39 Cluster. Cyg
M40 Asterism. UMa
M41 Cluster. CMa
M42 Nebula. Ori
M43 Nebula. Ori
M44 Cluster. Cnc
M45 Cluster. Tau
M46 Cluster. Pup
M47 Cluster. Pup
M48 Cluster. Hya
M49 Galaxy. Vir
M50 Cluster. Mon
M51 Galaxy. CVn
M52 Cluster. Cas
M53 Globular. Com
M54 Globular. Sgr
M55 Globular. Sgr
M56 Globular. Lyr
M57 Planetary. Lyr
M58 Galaxy. Vir
M59 Galaxy. Vir
M60 Galaxy. Vir
M61 Galaxy. Vir
M62 Globular. Oph
M63 Galaxy. CVn
M64 Galaxy. Com
M65 Galaxy. Leo
M66 Galaxy. Leo
M67 Cluster. Cnc
M68 Globular. Hya
M69 Globular. Sgr
M70 Globular. Sgr
M71 Globular. Sge
M72 Globular. Aqr
M73 Asterism. Aqr
M74 Galaxy. Psc
M75 Globular. Sgr
M76 Planetary. Per
M77 Galaxy. Cet
M78 Nebula. Ori
M79 Globular. Lep
M80 Globular. Sco
M81 Galaxy. UMa
M82 Galaxy. UMa
M83 Galaxy. Hya
M84 Galaxy. Vir
M85 Galaxy. Com
M86 Galaxy. Vir
M87 Galaxy. Vir

The objects listed in this section are by type. The 3-letter abbreviation of the constellation is given for each object. For more information about an object, see the corresponding entry under "Objects by Constellation" starting on page 40. This listing provides for cross-referencing and to give observers a convenient check-off list for observing objects of a single type-an endeavor many amateurs pursue. Note: Clusters and nebulae are often intertwined objects because clusters are born from nebulae. For this reason, those clusters associated with a nebula are listed under both Clusters and Nebulae.

Asterisms	Delta Lyrae
Big Dipper. UMa	Cluster. Lyr
Circlet. Psc	Gamma Velorum
Coathanger. Vul	Cluster. Vel
False Cross.	- IC 348. Per
Car/Vel	- IC 1805. Cas
Great Square. Peg	IC 2391. Vel
Kemble's Cascade.	IC 2395. Vel
Cam	IC 2488. Vel
Keystone. Her	IC 2581. Car
Little Dipper. UMi	IC 2602. Car
M40. UMa	IC 2714. Car
M73. Aqr	IC 2944. Cen
Northern Cross.	IC 4651. Ara
Cyg	IC 4665. Oph
Sickle. Leo	IC 4756. Ser
Summer Triangle.	- IC 5146. Cyg
Aql/Cyg/Lyr	M6. Sco
Winter Triangle.	M7. Sco
CMa/CMi/Ori	- M8. Sgr
	M11. Sct
	- M16. Ser
	- M17. Sgr
Clusters	M18. Sgr
- Associated with nebulosity	- M20. Sgr
nebulosity	M21. Sgr
Blanco 1. Scl	M23. Sgr
$\mathrm{Cr} 21 . \mathrm{Tri}$	M25. Sgr
Cr 69. Ori	M26. Sct
Cr 121. CMa	M29. Cyg
Cr 135. Pup	M34. Per
Cr 140. CMa	M35. Gem
Cr 228. Car	M36. Aur
Cr 232. Car	M37. Aur
Cr 338. Sco	M38. Aur
Cr 350. Oph	M39. Cyg
Cr 394. Sgr	M41. CMa
Cr 399. Vul	- M42. Ori
Cr 401. AqI	M44. Cnc

M45. Tau
M46. Pup
M47. Pup
M48. Hya
M50. Mon
M52. Cas
M67. Cnc
M93. Pup
M103. Cas

Mel 20. Per
Mel 101. Car
Mel 111. Com
Mel 227. Oct
NGC 152. Tuc
NGC 188. Cep
NGC 225. Cas
NGC 290. Tuc
NGC 330. Tuc
NGC 339. Tuc

- NGC 346. TuC NGC 361. Tuc
- NGC 371. Tuc NGC 381. Cas NGC 436. Cas - NGC 456. Tuc NGC 457. Cas NGC 458. Tuc - NGC 460. Tuc NGC 465. Tuc
- NGC 602. Hyi NGC 637. Cas NGC 654. Cas NGC 559. Cas NGC 659. Cas NGC 663. Cas NGC 743. Cas NGC 752. And NGC 869/884. Per NGC 884/869. Per NGC 1027. Cas NGC 1342. Per NGC 1502. Cam NGC 1513. Per NGC 1528. Per NGC 1545. Per - NGC 1624. Per NGC 1647. Tau NGC 1662. Ori NGC 1664. Aur NGC 1711. Men - NGC 1727. Dor NGC 1746. Tau NGC 1751. Men
- NGC 1770. Dor NGC 1778. Aur

NGC 1783. Dor NGC 1786. Dor NGC 1817. Tau NGC 1818. Dor NGC 1845. Men NGC 1846. Dor - NGC 1848. Men NGC 1857. Aur - NGC 1858. Dor NGC 1866. Dor NGC 1869. Dor NGC 1871. Dor NGC 1873. Dor NGC 1893. Aur NGC 1907. Aur - NGC 1929. Dor - NGC 1931. Aur

- NGC 1934. Dor
- NGC 1935. Dor
- NGC 1936. Dor
- NGC 1937. Dor
- NGC 1955. Dor - NGC 1966. Dor NGC 1978. Dor NGC 1981. Ori
- NGC 2014. Dor
- NGC 2018. Men NGC 2021. Men
- NGC 2048. Dor
- NGC 2070. Dor NGC 2112. Ori - NGC 2122. Men NGC 2129. Gem NGC 2158. Gem NGC 2169. Ori
- NGC 2175. Ori NGC 2186. Ori NGC 2194. Ori NGC 2204. CMa NGC 2215. Mon NGC 2232. Mon NGC 2236. Mon NGC 2243. CMa NGC 2244. Mon NGC 2251. Mon - NGC 2264. Mon NGC 2266. Gem NGC 2281. Aur NGC 2286. Mon NGC 2301. Mon NGC 2324. Mon NGC 2331. Gem NGC 2335. Mon NGC 2343. Mon NGC 2345. CMa

NGC 2353. Mon
NGC 2354. CMa
NGC 2360. CMa
NGC 2362. CMa
NGC 2367. CMa
NGC 2374. CMa
NGC 2383. CMa
NGC 2395. Gem
NGC 2420. Gem
NGC 2421. Pup
NGC 2423. Pup
NGC 2439. Pup
NGC 2451. Pup
NGC 2453. Pup
NGC 2467. Pup
NGC 2477. Pup
NGC 2479. Pup
NGC 2482. Pup
NGC 2483. Pup
NGC 2489. Pup
NGC 2506. Mon
NGC 2509. Pup
NGC 2516. Car
NGC 2527. Pup
NGC 2533. Pup
NGC 2539. Pup
NGC 2546. Pup
NGC 2547. Vel
NGC 2567. Pup
NGC 2571. Pup
NGC 2580. Pup
NGC 2587. Pup
NGC 2627. Pyx
NGC 2669. Vel
NGC 2670. Vel
NGC 2818. Pyx NGC 2910. Vel NGC 2925. Vel
NGC 3114. Car NGC 3228. Vel - NGC 3247. Car

- NGC 3293. Car
- NGC 3324. Car NGC 3330. Vel NGC 3532. Car NGC 3572. Car NGC 3590. Car NGC 3680. Cen NGC 3766. Cen NGC 3960. Cen NGC 4052. Cru NGC 4103. Cru NGC 4230. Cen NGC 4349. Cru NGC 4439. Cru

NGC 4609. Cru
NGC 4755. Cru
NGC 5138. Cen
NGC 5281. Cen
NGC 5316. Cen

- NGC 5367. Cen

NGC 5460. Cen
NGC 5606. Cen
NGC 5617. Cen
NGC 5662. Cen
NGC 5822. Lup
NGC 5823. Cir
NGC 5925. Nor
NGC 6025. TrA
NGC 6031. Nor
NGC 6067. Nor
NGC 6087. Nor
NGC 6124. Sco
NGC 6134. Nor
NGC 6152. Nor
NGC 6167. Nor
NGC 6169. Nor
NGC 6178. Sco
NGC 6192. Sco
NGC 6193. Ara
NGC 6200. Ara
NGC 6204. Ara
NGC 6208. Ara
NGC 6231. Sco
NGC 6242. Sco
NGC 6249. Sco
NGC 6250. Ara
NGC 6259. Sco
NGC 6268. Sco
NGC 6281. Sco
NGC 6322. Sco
NGC 6383. Sco
NGC 6396. Sco
NGC 6400. Sco
NGC 6416. Sco
NGC 6425. Sco
NGC 6451. Sco
NGC 6469. Sgr
NGC 6520. Sgr
NGC 6546. Sgr
NGC 6568. Sgr
NGC 6583. Sgr
NGC 6603. Sgr
NGC 6604. Ser
NGC 6633. Oph
NGC 6645. Sgr
NGC 6664. Sct
NGC 6709. AqI
NGC 6716. Sgr
NGC 6738. AqI

Objects by Name

8-Burst Nebula. See Southern Ring Nebula. 30 Doradus. See Tarantula Nebula.

37 Cluster. NGC 2169. Ori/5E
47 Tucanae. Globular Cluster. NGC 104. Tuc/SCP, A-8
α (Alpha) Persei Cluster. See Alpha Persei Cluster. η (Eta) Carinae Nebula. See Eta Carinae Nebula. o (Omicron) Velorum Cluster. See Omicron Velorum Cluster. ρ (Rho) Ophiuchi Nebula. See Rho Ophiuchi Nebula. ๓ (Omega) Centauri. See Omega Centauri.

Alpha (α) Persei Cluster. Cluster next to Mirphak. Per/2N
Andromeda Galaxy. M31. And/2N
Antennae Galaxies. Galaxy pair. NGC 4038/4039. Crv/11E
Barnard's Galaxy. Irregular Galaxy. NGC 6822. Sgr/20S
Barnard's Loop. Nebula. Sh2-276. Ori/5E
Barnard's Star. Fast moving star. Oph/17E
Beehive. See Praesepe.
Big Dipper. An Asterism of Ursa Major but most of us think of the Big Dipper as Ursa Major. UMa/NCP, 11N
Black Eye Galaxy. M64. Com/14E
Black Swan. Cluster. M18. Sgr/17E, A-12
Blinking Planetary. Planetary Nebula. NGC 6826. Cyg/20N
Blue Planetary. Planetary Nebula. NGC 3918. Cen/11S, A-9
Blue Snowball. Planetary Nebula. NGC 7662. And/23N
Bode's Nebulae. Galaxy pair. M81/M82. UMa/11N
Bow Tie Nebula. Planetary Nebula. NGC 40. Cep/23N
Box. 4 faint Galaxies: NGC's 4169, 4173, 4174, 4175.
Spans 4', m12.2-14.3, centered at [12h13m, $\left.+29^{\circ} 02^{\prime}\right]$. In Coma Berenices. Not plotted.
Box Nebula. Planetary Nebula. NGC 6309. Oph/17E
Brocchi's Cluster. Asterism. Cr 399. Better known as the Coathanger because it is shaped like one. Vul/20N.
Bubble Nebula. Stellar-wind Nebula. NGC 7635. Cas/23N
Bug Nebula. Planetary Nebula. NGC 6302. Sco/17S, A-12
Butterfly Cluster. M6. Sco/17S, A-12
California Nebula. Star-forming Nebula. NGC 1499. Per/5N
Carinae Nebula. See Eta Carinae Nebula.
Cat's Eye. Globular Cluster. M4 Sco/17S
Cat's Eye Nebula. Planetary Nebula. NGC 6543. Dra/17N
Cave Nebula. Star-forming Nebula. Sh2-155. Cep/23N
Centaurus A. Galaxy \& Radio Source. NGC 5128. Cen/14S
Christmas Tree Cluster. Cluster. NGC 2264. Mon/8E
Cigar Galaxy. Irregular Galaxy. M82. UMa/11N
Circlet. An Asterism of Pisces. Six stars that form a ring below the Great Square of Pegasus. Psc/23E.
Coalsack. Dark Nebula. Cru/14S, A-9
Coathanger. See Brocchi's Cluster
Cocoon Galaxy. Spiral Galaxy. NGC 4490. CVn/14N
Cocoon Nebula. Star-forming Nebula. IC 5146. Cyg/23N, 20N
Cone Nebula. Diffused \& Dark Neb. NGC 2264. Mon/8E
Copeland's Septet. 7 faint Galaxies: NGC's 3745, 3746, $3748,3750,3751,3753,3754$. Spans 5 ', m13.6-15.2, centered at [$\left.11 \mathrm{~h} 39 \mathrm{~m},+21^{\circ} 56^{\prime}\right]$. In Leo. Not plotted.
Crab Nebula. Supernova Remnant. M1. Tau/5N
Crescent Nebula. Emission Nebula. NGC 6888. Cyg/20N
Croc's Eye. Sprial Galaxy. M94. CVn/14N
Cross. See Northern Cross and/or Southern Cross.

Dark Doodad. Dark Nebula. Mus/14S
Demon Star. The Variable Star, Algol. Per/2N
Diamond Cluster. Cluster. NGC 2516. Car/8S
Double-Double. Double Star, ε Lyrae. Lyr/20N
Double Cluster. Side-by-Side pair. NGC 869/884. Per/2N
Dumbbell Nebula. Planetary Nebula. M27. Vul/20N
Eagle Nebula. Nebula/Cluster. M16. Ser/17E, A-12
Eight-burst Nebula. See Southern Ring Nebula.
Engagement Ring. Asterism. Nine stars that roughly form a circle with Polaris. UMi/A-1.
Eskimo Nebula. Planetary Nebula. NGC 2392. Gem/8N
Eta ($\boldsymbol{\eta}$) Carinae Nebula. Star-forming Nebula. NGC 3372. Car/11S, A-9, A-11
Eyes. Two Galaxies. NGC 4435 \& 4438 in Markarian's Chain. Vir/A-14

False Cross. 2 stars in Carina \& 2 stars in Vela that are confused with the true Southern Cross. Indicated on charts 11 S and 8 S .
Firecracker Galaxy. Spiral Galaxy. NGC 6946. Cyg/20N
Flame Nebula. Emission Nebula. NGC 2024. Ori/5E
Flaming Star Nebula. Star-forming Nebula. IC 405. Aur/5N
Flickering Globular. Globular Cluster. M62. Oph/17S
Garnet Star. See Herschel's Garnet Star.
Gem Cluster. Cluster. NGC 3293. Car/11S, A-9
Ghost of Jupiter. Planetary Nebula. NGC 3242. Hya/11E
Great Hercules Cluster. Globular Cluster. M13. Her/17N
Great Orion Nebula. See Orion Nebula.
Great Pegasus Cluster. Globular Cluster. M15. Peg/23E
Great Rift. A dark dust lane in the Milky Way Band that stretches from Cygnus to Sagittarius. 20N, 20E, 17E
Great Sagittarius Cluster. Globular Cluster. M22. Sgr/20S, A-12
Great Square. An Asterism of Pegasus. Four bright stars in Pegasus that form a giant "square." Peg/23N.
Grus' Quartet. 4 Galaxies: NGC's 7752, 7582, 7590, 7599. Gru/23S
Heart Cluster. Cluster. NGC 2547. Vel/8S
Heart Nebula. Emission Nebula. IC 1805. Cas/2N
Helix Galaxy. Polar-ring Galaxy. NGC 2685. UMa/8N
Helix Nebula. Planetary Nebula. NGC 7293. Aqr/23E
Hercules Cluster. See Great Hercules Cluster.
Herschel's Garnet Star. Red Star, μ Cephei. Cep/23N
Hind's Variable Nebula. Nebula. NGC 1555. Tau/5N
Horsehead Nebula. Dark Nebula. Overlaps IC 434. Ori/5E
Hourglass Nebula. Brightest part of the Lagoon Nebula, M8. Sgr/17E, A-12
Hubble's Variable Nebula. Nebula. NGC 2261. Mon/8E
Hyades. Largest Cluster. Also an Asterism. Tau/5N
Intergalactic Wanderer. Globular Cluster. NGC 2419. Lyn/8N
Iris Nebula. Star-forming Nebula. NGC 7023. Cep/20N
Jewel Box. Cluster. NGC 4755. Cru/14S, A-9. There is a northern counterpart called the Northern Jewel Box.

Kemble's Cascade. Twenty $m 8$ stars in a 2.5° line. Cam/5N
Kepler's Star. Supernova Remnant, 1604 AD. Oph/17S, A-12
Keystone. Asterism. Four stars that form the shape of the top center stone used in forming an arch, like that of a doorway. Her/17N.
King Cobra. Cluster. M67. Cnc/8N

Messier Objects

The Messier Object catalogue represents the cream-of-the-crop deep sky objects that can be seen from the mid-latitudes of the northern hemisphere. It was compiled at the end of the 1700s by Charles Messier from Paris, France, using telescopes around 3 to 4 -inches in diameter. This catalogue is historically significant because it is the very first catalogue ever compiled of deep sky objects. And, since it lists the biggest and brightest objects in the sky, it has become a logical "next step" for amateurs wanting to go beyond observing the Moon and planets.

An interesting point about this catalogue is that it has at least one example of every type of deep sky object that exists, so it represents a good sample of the objects that can be found in the heavens.

There is a quirk of nature that allows viewing all of the Messier objects in one night. This can be accomplished around New Moon during March. This event has become known as a Messier Marathon and many astronomy clubs sponsor "parties" to accomplish this dusk to dawn task.

Charles Messier was born in Badonviller, France in 1730. His father held a mayoral-type position in the town but passed away when Messier was 11. Hyacinthe, Charles's brother, trained Charles as an administer's assistant and eventually found Charles a job in Paris as an assistant to an astronomer.

Messier did exceedingly well at his job, advanced, and became, during his time, the leading observational astronomer in the world. He eventually acquired his boss's position as Astronomer of the Navy. During his career, he wrote numerous articles that spanned the field of astronomy and were published in the leading scientific journals. One of

Charles Messier was the leading observational astronomer in the 1700s and compiled the first catalogue of deep sky objects.
his most notable life-long achievements was discovering about 20 comets, which established his credibility and lead to his induction into almost every European science academy.

Messier never would have believed that his namesake would be defined by his little catalogue-he would have thought it would have been his comet discoveries. He catalogued deep sky objects because he realized that such a catalogue was missing in the field of astronomy (astronomy and most sciences were just starting to get organized during this time in history). To start the catalogue, he used a few short lists of deep sky objects compiled by other astronomers and quickly added objects he found exploring the night sky. Three editions of his catalogue were published, each growing in size, with the last published in 1781 , listing 103 objects. He stopped adding objects because in 1785 , William Herschel, inspired by Messier's catalogue, published a catalogue listing about 1,000 objects using an 18.7 -inch diameter telescope. Messier knew he could not compete!

Although Messier's last catalogue listed just 103 objects, seven additional objects have been addedobjects that he described in other publications but never listed in his catalogue. In the table below, the Double Cluster (in Perseus) has been added as objects 111 and 112 because these are Messier-type objects that Messier knew existed but for some reason missed including them—his only glaring "error."

Messier passed away in 1731 at his residence in the Cluny Hotel (near the Sorbonne), now known as the National Museum of the Middle Ages. His observatory was atop the front tower but no trace remains.

The Messier Catalogue

\#	Cons.	Charts	NGC\#	RA 2025.0 Dec	Object	Mag.	Arc Size	Name
M1	Tau	5N, 5E	1952	5h 36m +22 ${ }^{\circ} 02{ }^{\prime}$	Supernova Remnant	8	6×4	Crab Nebula
M2	Aqr	23E, 20E	7089	21h 35m -00 43^{\prime}	Globular Cluster	6.5	13^{\prime}	
M3	CVn	14N, 14E	5272	13h 43m +280 ${ }^{\circ} 5^{\prime}$	Globular Cluster	6.2	16^{\prime}	
M4	Sco	17E, 17S	6121	16h 25 m - $26^{\circ} 35^{\prime}$	Globular Cluster	5.9	26^{\prime}	Cat's Eye
M5	Ser	14E, 17E	5904	$15 \mathrm{~h} 20 \mathrm{~m}+1^{\circ} 59^{\prime}$	Globular Cluster	5.7	17^{\prime}	
M6	Sco	17E, 17S ${ }^{1}$	6405	17h 42m -32 ${ }^{\circ} 16^{\prime}$	Cluster	4.2	15^{\prime}	Butterfly Cluster
M7	Sco	17E, 17S ${ }^{1}$	6475	17h $56 \mathrm{~m}-34^{\circ} 47^{\prime}$	Cluster	3.3	80'	Ptolemy's Cluster
M8	Sgr	17E, 17S ${ }^{1}$	6523	18h 05m -24* 23^{\prime}	Nebula	6	$1.5 \times 0.7^{\circ}$	Lagoon Nebula
M9	Oph	17E, 17S ${ }^{1}$	6333	17h 21m -18 ${ }^{\circ} 33^{\prime}$	Globular Cluster	7.7	9'	
M10	Oph	17E	6254	16h 58m - $4^{\circ} 08^{\prime}$	Globular Cluster	6.6	15^{\prime}	
M11	Sct	20E, 20S	6705	18h 52m -60 ${ }^{\circ} 4^{\prime}$	Cluster	5.8	14^{\prime}	Wild Duck Cluster
M12	Oph	17E	6218	16h 49m - $2^{\circ} 00^{\prime}$	Globular Cluster	6.7	15^{\prime}	
M13	Her	17N, 17E	6205	16h 43m +36 ${ }^{\circ} 25^{\prime}$	Globular Cluster	5.8	17^{\prime}	Great Hercules Cluster
M14	Oph	17E	6402	17h 39m -3 ${ }^{\circ} 16^{\prime}$	Globular Cluster	7.6	12^{\prime}	
M15	Peg	23E, 20E	7078	21h $31 \mathrm{~m}+12^{\circ} 17^{\prime}$	Globular Cluster	6.2	12^{\prime}	Great Pegasus Cluster
M16 ${ }^{2}$	Ser	17E, 17S ${ }^{1}$	6611	18h $20 \mathrm{~m}-13^{\circ} 46^{\prime}$	Nebula/Cluster	6	$35 \times 28{ }^{\prime}$	Eagle Nebula
M17	Sgr	17E, 17S ${ }^{1}$	6618	18h $22 \mathrm{~m}-16^{\circ} 10^{\prime}$	Nebula/Cluster	6.5	46x37'	Omega Nebula, Swan Nebula
M18	Sgr	17E, 17S ${ }^{1}$	6613	18h $21 \mathrm{~m}-17^{\circ} 05^{\prime}$	Cluster	6.9	9'	Black Swan
M19	Oph	17E, 17S ${ }^{1}$	6273	17h 04m - $26^{\circ} 18{ }^{\prime}$	Globular Cluster	6.8	14^{\prime}	
M20	Sgr	17E, 17S ${ }^{1}$	6514	18h 04m-23 ${ }^{\circ} 02^{\prime}$	Nebula/Cluster	8	$28 \times 28{ }^{\prime}$	Trifid Nebula

[^1]
Caldwell Objects

The Calwell objects are a more recent listing of deep sky objects picked by the British amateur astronomer Sir Patrick Alfred Caldwell-Moore (1923-2012) from existing catalogues. Although Moore is mostly unknown to Americans, he was a well-known British celebrity having the longest run British TV show on astronomy, The Sky at Night, and has written more than 70 books on astronomy.

In 1995, the popular US astronomy magazine, Sky and Telescope, published Moore's list of 109 deep sky objects that he selected as a supplement to Messier's objects, but encompassing the entire celestial
sphere. His catalogue contains objects mostly from the NGC and IC catalogues by Dreyer. He uniquely ordered his objects by declination from north to south.

The Caldwell objects are not specifically noted in this celestial atlas using Moore's designations because the list is not historically significant. However, all of the Caldwell objects can be found in this celestial atlas using their traditional catalogue designations, which are included in the table below. The Caldwell catalogue is provided because of an interest by amateurs to find objects on lists.

The Caldwell Catalogue

\#	Cons.	Charts	NGC\#	RA 2025.0 Dec		Object	Mag.	Arc Size	Name
C1	Cep	NCP	188	Oh 50 m	$+85^{\circ} 23^{\prime}$	Cluster	8.1	17^{\prime}	
C2	Cep	23N	40	Oh 14m	+720 $40{ }^{\prime}$	Planetary Nebula	10.7	$36^{\prime \prime}$	Bow Tie Nebula
C3	Dra	NCP, 11N	N 4236	12h 18m	+690 19^{\prime}	Spiral Galaxy	9.6	$22 \times 6{ }^{\prime}$	
C4	Cep	20N	7023	21h 02m	+680 16^{\prime}	Nebula	6.8	$18 \times 18^{\prime}$	Iris Nebula
C5	Cam	2N	IC 342	3h 49m	+680 11^{\prime}	Spiral Galaxy	9.7	20x19'	
C6	Dra	NCP, 17N	N 6543	17h 59m	+660 $38{ }^{\prime}$	Planetary Nebula	8.1	201	Cat's Eye Nebula
C7	Cam	8N	2403	7h 39m	+65 ${ }^{\circ} 33^{\prime}$	Spiral Galaxy	8.5	16x8'	
C8	Cas	2N	559	1h 31m	+63 ${ }^{\circ} 26^{\prime}$	Cluster	9.5	5^{\prime}	
C9	Cep	23N S	Sh2-155	22h 58m	+620 ${ }^{\circ} 5^{\prime}$	Nebula	7.7	$50 \times 10^{\prime}$	Cave Nebula
C10	Cas	2N	663	1h 48m	+61 ${ }^{\circ} 22^{\prime}$	Cluster	7.1	16^{\prime}	
C11	Cas	23N	7635	23h 22 m	$+61^{\circ} 20$	Nebula	11.0	$15 \times 8{ }^{\prime}$	Bubble Nebula
C12	Cyg	20N	6946	20h 35m	$+60^{\circ} 14^{\prime}$	Spiral Galaxy	9.1	12×11'	
C13	Cas	2N	457	1h 21m	+580 25^{\prime}	Cluster	6.4	13	Owl Cluster
C14	Per	2N	869/884	2h 22 m	+570 14^{\prime}	Two Clusters	4 \& 4	$30^{\prime} \& 30^{\prime}$	Double Cluster
C15	Cyg	20N	6826	19h 45m	$+50^{\circ} 35^{\prime}$	Planetary Nebula	8.9	25 "	Blinking Planetary
C16	Lac	23N	7243	22h 16m	$+50^{\circ} 00^{\prime}$	Cluster	6.4	29^{\prime}	
C17	Cas	2N	147	Oh 35m	+48 ${ }^{\circ} 39^{\prime}$	Elliptical Galaxy	9.6	9×5	
C18	Cas	2N	185	0h 40m	$+48^{\circ} 29^{\prime}$	Elliptical Galaxy	9.2	$9 \times 7{ }^{\prime}$	
C19	Cyg	23N, 20N	N IC5146	21h 54 m	$+47^{\circ} 23^{\prime}$	Nebula/Cluster	7.2	12×12	Cocoon Nebula
C20	Cyg	20N	7000	21h 00m	$+44^{\circ} 26^{\prime}$	Nebula	6	$2 \times 1.7^{\circ}$	North America Nebula
C21	CVn	14N	4449	12h 29m	+430 57^{\prime}	Irregular Galaxy	9.6	6×5	
C22	And	23N	7662	23h 27 m	$+42^{\circ} 40$	Planetary Nebula	8.3	17"	Blue Snowball
C23	And	2N	891	2h 24 m	$+42^{\circ} 28^{\prime}$	Spiral Galaxy	9.9	13×3 '	
C24	Per	5N, 2 N	1275	3h 21 m	$+41^{\circ} 36$	Seyfert Galaxy	11.8	2×1	
C25	Lyn	8N	2419	7h 40m	+380 $50{ }^{\prime}$	Globular Cluster	9.1	6^{\prime}	Intergalactic Wanderer
C26	CVn	14N	4244	12h 19m	+370 $40{ }^{\prime}$	Spiral Galaxy	10.4	16×3 '	
C27	Cyg	20N	6888	20h 13m	+380 29^{\prime}	Nebula	7.4	20×10	Crescent Nebula
C28	And	2N	752	1h 59m	+370 54^{\prime}	Cluster	5.7	50^{\prime}	
C29	CVn	14N	5005	13h 12m	+36 ${ }^{\circ} 56^{\prime}$	Spiral Galaxy	9.8	5×3 '	
C30	Peg	23N	7331	$22 \mathrm{~h} \mathrm{38m}$	+340 33^{\prime}	Spiral Galaxy	9.5	10x4'	
C31	Aur	5N	IC 405	5h 18m	$+34^{\circ} 18^{\prime}$	Nebula	10.0	$30 \times 19{ }^{\prime}$	Flaming Star Nebula
C32	CVn	14N	4631	12h 43m	$+32^{\circ} 24^{\prime}$	Spiral Galaxy	9.2	$14 \times 3{ }^{\prime}$	
C33	Cyg	20N	6992/5	20h 57m	+310 49^{\prime}	Supernova Remnant	8	60x8'	East Veil Nebula
C34	Cyg	20N	6960	20h 47 m	$+30^{\circ} 48^{\prime}$	Supernova Remnant	8	70x6'	West Veil Nebula
C35	Com	14N	4889	13h 01m	+270 51	Elliptical Galaxy	11.5	3×2 '	
C36	Com	14N	4559	12h 37m	+270 49^{\prime}	Spiral Galaxy	9.8	$11 \times 5{ }^{\prime}$	

Name (Desig.)	Mag. ${ }^{1}$	Const.	Dist.	Chart	Name (Desig.)	Mag. ${ }^{1}$	Const.	Dist.	Chart
Acamar (θ)	3.2	Eridanus	161 ly	$2 S$	Ascella (弓)	2.6	Sagittarius	88 ly	205
Achernar (α)	0.5	Eridanus	139 ly	2 S	Asellus Australis (δ)	3.9	Cancer	136 ly	8E
Acrux (α)	0.8	Crux	320 ly	145	Asellus Borealis (γ)	4.7	Cancer	158 ly	8E
Acubens (α)	4.3	Cancer	174 ly	8N	Aspidiske (ı)	2.2	Carina	690 ly	115
Adhafera (ζ)	3.4	Leo	274 ly	11E	Asterope (21)	5.76	Taurus/Pleiades	444 ly	A-3
Adhara (ε)	1.5	Canis Major	430 ly	8S	Atik (ζ)	2.8	Perseus	750 ly	5N
Albali (ε)	3.8	Aquarius	208 ly	20E	Atlas (27)	3.6	Taurus/Pleiades	444 ly	A-3
Albireo (β)	3.2	Cygnus	430 ly	20N	Atria (${ }_{\text {a }}$	1.9	Triangulum Australe	391 ly	175
Alchiba (α)	4.0	Corvus	48 ly	115	Avior (ε)	1.9	Carina	610 ly	8S
Alcor (80)	3.99	Ursa Major	83 ly	14N	Azha ($\boldsymbol{\eta}$)	4.1	Eridanus	121 ly	2E
Alcyone ($\boldsymbol{\eta}$)	2.86	Taurus/Pleiade	es 444 ly	A-3	Baten Kaitos (ζ)	3.9	Cetus	260 ly	2E
Aldebaran (α)	0.9 v	Taurus	65 ly	5E	Becrux/Mimosa (β)	1.3	Crux	280 ly	115
Alderamin (α)	2.5	Cepheus	49 ly	23N	Beid (\mathbf{o}^{1})	4.0	Eridanus	125 ly	5E
Alfirk (β)	3.2	Cepheus	690 ly	23N	Bellatrix (γ)	1.6	Orion	250 ly	5E
Algedi (α^{1})	4.3	Capricorn	690 ly	205	Betelgeuse (α)	0.6 v	Orion	643 ly	5E
$\left(\alpha^{2}\right)$	3.6	Capricorn	109 ly	205	Biham (θ)	3.5	Pegasus	97 ly	23E
Algenib (γ)	2.8	Pegasus	390 ly	23E	Canopus (α)	-0.7	Carina	310 ly	8S
Algieba (γ)	2.0	Leo	130 ly	11E	Capella (α)	0.1	Auriga	43 ly	5N
Algol (β)	2.1 v	Perseus	93 ly	2N	Caph (β)	2.3	Cassiopeia	55 ly	2N
Algorab (δ)	3.1	Corvus	87 ly	11S	Castor (α)	1.6	Gemini	51 ly	8E
Alhena (γ)	1.9	Gemini	109 ly	8E	Cebalrai (β)	2.8	Ophiuchus	82 ly	17E
Alioth (ε)	1.8	Ursa Major	83 ly	11N	Celaeno (16)	5.44	Taurus/Pleiades	444 ly	A-3
Alkaid ($\boldsymbol{\eta}$)	1.9	Ursa Major	104 ly	14N	Chara (β)	4.3	Canes Venatici	28 ly	14N
Alkalurops (μ)	4.5	Bootes	121 ly	14N	Chertan (θ)	3.4	Leo	165 ly	11E
Alkes (a)	4.1	Crater	174 ly	11E	Cor Caroli (α)	2.9	Canes Venatici	110 ly	14N
Almaak (γ)	2.3	Andromeda	350 ly	2N	Cursa (β)	2.8	Eridanus	89 ly	5E
Alnair (α)	1.7	Grus	101 ly	$23 S$	Dabih (β)	3.1	Capricornus	328 ly	20 E
Alnasl (γ)	3.0	Sagittarius	97 ly	17 S	Deneb (a)	1.3	Cygnus 2,	,600 ly	20N
Alnath (β)	1.7	Taurus	131 ly	5 E	Deneb Algedi (δ)	2.9	Capricornus	39 ly	20E
Alnilam (ε)	1.7	Orion	1,300 ly	5 E	Deneb Kaitos (β)	2.0	Cetus	96 ly	2E
Alnitak (ζ)	1.7	Orion	1,260 ly	5E	Denebola (β)	2.1	Leo	36 ly	11E
Alphard (α)	2.0	Hydra	177 ly	115	Dubhe (α)	1.8	Ursa Major	123 ly	11N
Alphekka (α)	2.2	Corona Boreali	lis 75 ly	17N	Edasich (1)	3.3	Draco	101 ly	17N
Alpheratz (α)	2.1	Andromeda	97 ly	23N	Electra (17)	3.70	Taurus/Pleiades	444 ly	A-3
Alrakis (μ)	5.7	Draco	88 ly	17N	Enif (ε)	2.4	Pegasus	690 ly	23E
Alrescha (α)	4.5	Pisces	139 ly	2E	Errai (γ)	3.2	Cepheus	45 ly	23N
Alshain (β)	3.9	Aquila	45 ly	20E	Etamin (γ)	2.2	Draco	154 ly	17N
Alsuhail/Regor (λ)	1.8	Vela	1,100 ly	8S	Fomalhaut (α)	1.2	Piscis Austrinus	25 ly	$23 S$
Altair (α)	0.8	Aquila	17 ly	20E	Furud (ζ)	3.0	Canis Major	362 ly	8E
Altais (δ)	3.1	Draco	97 ly	17N	Gacrux (γ)	1.7	Crux	89 ly	11 S
Alterf (λ)	4.3	Leo	336 ly	11E	Giausar (λ)	4.1	Draco	334 ly	11N
Aludra ($\boldsymbol{\eta}$)	2.4	Canis Major	2,000 ly	8S	Gienah (γ)	2.6	Corvus	154 ly	11E
Alula Australis (ξ)	3.8	Ursa Major	29 ly	11N	Gomeisa (β)	2.9	Canis Minor	162 ly	8E
Alula Borealis (v)	3.5	Ursa Major	399 ly	11N	Graffias (β)	2.6	Scorpius	400 ly	17S
Alya (0)	4.0	Serpens	132 ly	20 E	Grumium (ξ)	3.8	Draco	113 ly	17N
Ancha (θ)	4.2	Aquarius	187 ly	23E	Hadar (β)	0.6	Centaurus	350 ly	14 S
Ankaa (α)	2.4	Phoenix	85 ly	2 S	Hamal (a)	2.0	Aries	66 ly	2N
Antares (α)	1.1	Scorpius	550 ly	17S	Homam (弓)	3.4	Pegasus	204 ly	23E
Arcturus (α)	-0.04v	Bootes	37 ly	14E	Izar (ε)	2.7	Bootes	203 ly	14N
Arkab (β)	4.0	Sagittarius	378 ly	205	Kaus Australis (ε)	1.8	Sagittarius	143 ly	17 S
Arneb (α)	2.6	Lepus	2,200 ly	5 E	Kaus Borealis (λ)	2.8	Sagittarius	78 ly	17S

See Notes at the bottom of page 86 about spellings.
${ }^{1}$ The small "v" next to magnitudes indicates that the star varies a little in brightness.

Greek Mythology

Today, we have a scientific understanding of the world but ancient civilizations did not have this luxury, so they made up stories to explain natural wonders like the shape of mountains and everyday events like the wind, thunder, lightning and movement of the Sun and Moon. Often these stories involved mighty characters or gods who wielded the power to move heaven and Earth. Over time, these stories became traditions, beliefs and their religions. This occurred with every civilization at every "corner" of the world.

The "stories" that influenced our western culture the most came from the Greeks and were adopted by the Romans.

The Greek stories are plentiful and rich in content but they differ from the stories that we tell and write today. Our modern-day stories unfold in a way that is familiar because they reflect our experiences, perceptions and values. And, so did the Greek's but they saw life differently! To them, life was capricious and heavily laced with non-sequitur twists and turns. As such, their mythological stories often take us on a wild roller-coaster ride that jumps rails.

The mythological stories vary and overlap. Presented below are some of the more popular versions as they relate to the heavens.

North Circumpolar Constellations

Ursa Major and Ursa Minor, respectively the "Big Bear" and "Little Bear," are better known as the Big and Little Dippers. In Greek mythology they represent a mother, Callisto and her son, Arcas sent to the sky by Jupiter. Jupiter came upon the beautiful Callisto, daughter of King Lycaon of Arcadia, when he was on Earth, inspecting carnage caused by Phaethon, son of Helios, who had arrogantly tried to ride the Sun Chariot across the sky. Jupiter took favor upon Callisto, and against her will, fathered her a son, Arcas. Jupiter's wife, Juno discovered her husband's escapade and turned Callisto into an ugly bear. Later, when Arcas had grown up and was hunting, he encountered a bear running towards him. Not knowing that it was his mother, he aimed an arrow to kill but Jupiter took sympathy and intervened, turning Arcas into a bear and hurling both into the sky as restitution for all the agony he caused.

Cepheus and Cassiopeia were the king and queen of Ethiopia and parents of a daughter, Andromeda. The gods became angry at Cassiopeia because of her boastings that she and her daughter were more beautiful than the Nereids mermaids, whose protector was Neptune. To appease the gods for Cassiopeia's disrespect, Cepheus had to sacrifice his daughter to the Sea Monster, Cetus. About this same time, Perseus, the son of Jupiter, had cut off Medusa's head for a wedding gift, and was heading back with it from this journey. He saw Andromeda chained to a sea cliff, and instantly fell in love.

Noticing her parents watching in agony, Perseus agreed to rescue her for marriage and then chopped Cetus' head off with the sickle he had used on Medusa. At his wedding, a prior suitor showed up which prompted the royal parents to renege on their promise to Perseus.

A fight ensued, and Perseus was almost overpowered but was saved by using Medusa's head, for all who looked upon her face turned to stone. Afterwards, the royal couple was banished to the heavens by Neptune for their misdeeds.

Draco, the Dragon, was one of the many monsters fighting along with the great Titans against the Olympians, commanded by Jupiter. Near the climax of the battle, the dragon opposed the goddess of Wisdom, Minerva, who in turned flung it to the heavens where it froze twisted, after landing so close to the frigid North Celestial Pole.

Camelopardalis, the Giraffe, Lacerta, the Lizard, and the Lynx are faint constellations that were added in the 1600's.

Spring Constellations

Originally, Leo, the Lion, extended eastward to Cancer and westward to Coma Berenices. Its whiskers were the Beehive (M44) and its tail ended up in the faint cluster of stars at the top of Coma Berenices (Mel 111). Regulus, the brightest star in Leo, has been identified with the birth of Christ. Its name implies King, Mighty, Great, Center or Hero, depending on the culture.

There is no classical mythology for Leo Minor, because this constellation was created in the 1600 s. Cancer, the Crab, was sent to prevent Hercules from killing the Hydra. However, Hercules trampled the Crab and succeeded in killing the Hydra anyway. The Hydra had nine heads and if one was chopped off, two grew back in its place. Hercules had to burn each stub to prevent the heads from growing back. Corvus was a bird placed in the heavens on Hydra's back by Apollo for being slow in bringing him water and lying about his tardiness. Crater represents the container of water that is always out of reach of Corvus.

Canes Venatici are the Hunting Dogs of Bootes, the Bear Driver, who is sometimes seen as a Herdsman or Ploughman. One story has it that Ceres, the goddess of Agriculture, asked Jupiter to place Bootes amongst the stars in gratitude for his invention, the plough. Another story is that Bootes was a grape grower taught to make wine by Bacchus, the god of Wine. Upon making the first batch, he celebrated with his friends who got so drunk, they fell asleep. The next morning, his friends killed him because they thought he was trying to poison them. His hunting dogs were so shaken by his death that they died with him.

An interesting story about Virgo, the Maiden, is that she was Proserpina, the daughter of Ceres. Pluto, the god of the Underworld, noticed her beauty one day when she was playing in her mother's fields. He swiftly abducted her to the Underworld. Ceres was enraged at his action and decided to abandon all the crops. Jupiter intervened when he noticed the Earth becoming barren, so he struck a compromise. Pluto would have Proserpina for half a year and Ceres for the other half. When Virgo is in the night sky, crops grow, but when she has sunk below the horizon to the Underworld, the growing season ends.

Centaurs were offspring of the gods, half-man and half-horse creatures that walked on four legs. Some say that Centaurus represents Chiron, the wisest and gentlest of his kind, whom Jupiter placed in the heavens to reward him for educating Hercules, Jason, Achilles and others. Lupus, the Wolf, was a generic wild animal to the Greeks but was also seen as the centaurs' offering to the gods or a wine skin for libation (having nothing to do with animals). Take your pick!

Summer Constellations

There is probably more lore about Hercules, the Strongman, than any other mythological figure. It is ironic however, that his stars are not as prominent as his stature. Hercules should have the stars of Orion. Hercules' mother was Alcmene and his father Jupiter, but, Alcmene was married to the Thebesian military leader, Amphytrion. Once, when he was off to battle, Jupiter came to Alcmene in the form of her husband, feigning a short leave. Hercules, like many offspring of Jupiter, had to endure the wrath of Jupiter's wife Juno for most of his life. One day, Hercules met two women, Pleasure and Virtue, who foretold that he could have either of their lives, but that the life of Virtue which Hercules picked would be difficult yet have a glorious end. This leads to the famous twelve labors of Hercules which were tasks directed by King Eurystheus. The labors often involved fighting ferocious beasts with themes loosely based on the twelve zodiacal constellations. Hercules was placed into the heavens by Jupiter after his wife Deianeira gave him a caustic poison because she wrongly believed that he was interested in another woman.

SOUTHERN

HEMISPHERE

The Large and Small Magellanic Clouds may appear as detached patches of the Milky Way Band but they are galaxies, albeit small, just like our Milky Way Galaxy. And, these two are satellites or "moons," gravitationally bound to us. Near to the northwest horizon are the Andromeda (M31) and Pinwheel (M33) Galaxies. The Andromeda Galaxy, visible to the naked eyes, the Magellanic Clouds, and the Pinwheel Galaxy, are four of about 50 Local Group galaxies that are gravitationally bound to one other. Unfortunately, the orbits of the 50 are not as orderly as we might like because in about four billion years, our galaxy will collide with the Andromeda Galaxy.

SELECTED OBJECTs
CR 135 Cluster. A m2.1, 50', 15^{*}. Very loose \& sparse. Pup/8S D=840 ly, S=12 ly
M41 Little Beehive Cluster. m4.5, 38', 80*. CMa/8S $\mathrm{D}=2,200 \mathrm{ly}, \mathrm{S}=24 \mathrm{ly}$
M42 Orion Nebula. m4.0, $1.1 \times 1^{\circ}$. Ori/5E/A-4 $D=1,500 \mathrm{ly}, \mathrm{S}=66 \mathrm{ly}$
M46 Cluster. m6.1, 27', 100*
Pup/8S D=5,400 ly, S=42 ly
M47 Cluster. m4.4, 30', 30*. Pup/8S D=1,600 ly, S=14 ly
M78 Nebula. m8, 8×6'. Ori/5E $D=1,600 \mathrm{ly}, \mathrm{S}=4 \mathrm{ly}$
M79 Globular Cluster. m7.7, 9'. Lep/5E $D=41,000 \mathrm{ly}, \mathrm{S}=107 \mathrm{ly}$

M93 Cluster. m6, 22', 80*. Pup/8S D=3,600 ly, S=23 ly
NGC 10447 Tucanae Globular Cluster. m4.0, 43'. Tuc/23S $D=16,700 \mathrm{ly}, \mathrm{S}=209 \mathrm{ly}$
NGC 2070 Tarantula Nebula. Inside the LMC. Nebula and cluster. m5.0, 40×25'. Contains a 5 ' super cluster with thousands of stars. Dor/5S $D=157,000 \mathrm{ly}, \mathrm{S}=1,800 \mathrm{ly}$
NGC 2362 Cluster.
m4.1, 7', 60*. CMa/8E
$D=4,800 \mathrm{ly}, \mathrm{S}=10 \mathrm{ly}$
NGC 2451 Cluster. m2.8, 44', 40*. Pup/8S This is actually two clusters in the same line of sight!
NGC 2477 Cluster. m5.8, 26^{\prime}, 160*. Pup/8S $D=3,600 \mathrm{ly}, \mathrm{S}=27 \mathrm{ly}$

DOUBLE STARs
145G Canis Majoris. Blue \& Gold. $m 5.0 / 5.8$, Sep=26.8". CMa/8S $\mathrm{D}=6,300 \mathrm{ly}$
Acamar ($\boldsymbol{\theta}$). m3.2/4.3, Sep=8.3". Eri/5S $\mathrm{D}=161 \mathrm{ly}$
Alsuhail ($\boldsymbol{\gamma}$). Four stars spanning 1.5'. m1.8/4.3/7.4/9.2. Vel/8S $D=336$ ly
Rigel ($\boldsymbol{\beta}$). $m 0.3 / 10.4, \mathrm{Sep}=9.5^{\prime \prime}$. Ori/5E D=860 ly
Trapezium ($\boldsymbol{\theta}^{\mathbf{1}}$). Four stars. In the M42 Orion Nebula. See close-up chart A-4.
ζ Orionis. $m 1.7 / 3.9$, $\operatorname{Sep}=2.3^{\prime \prime}$. Ori/5E D=387 ly
$\boldsymbol{\beta}^{1}$ Tucanae. $m 4.3 / 4.5, \mathrm{Sep}=27{ }^{\prime \prime}$. Tuc/23S D=140 ly
$\boldsymbol{\gamma}$ Volantis. $m 4.0 / 5.5$, $\operatorname{Sep}=14.4$ ". Vol/8S D=142 ly

Moon, Mercury and Venus

Major features of the Moon

The most notable features on the Moon are its brighter cratered highlands called terrae and smoother darker plains known as maria. These and other features are described below.

Terminator. The border or "line" separating the lighted side from the dark side. The terminator is absent during Full Moon. Craters, and other surface detail, appear their sharpest/best near the terminator.
Craters. Large and small bowl-like depressions on the Moon. Most of the craters on the Moon were formed from meteoroid or cometary impacts that ended about 3 billion years ago.
Terrae \& Maria. Terms coined by Galileo meaning "highlands" and "seas." The lighter-colored terrae have the highest concentration of craters and are older than the maria. The darker maria are smoother areas of the Moon and represent 31% of its surface on the near side. They are the result of impacts from very large asteroids or comets creating fractures to the once molten interior, releasing dark, iron-rich, basalt lava, which flowed upward and outward to create the great plains. They average 500 to 600 feet thick. There are very few maria on the far side of the Moon.

Rilles \& Faults. Rilles are long valley-type depressions in the maria, up to hundreds of miles in length that can be linear, curved or sinuous. Many rilles can be seen in telescopes. Faults, like the Straight Wall (see photo on page 107), can also be seen in the maria.
Rays. Bright streaks that radiate from some craters. They represent lighter, reflective material, ejected during the formation of craters and are most pronounced around Full Moon. The crater Tycho has the longest rays, spanning one-quarter of the globe. It is estimated that rayed craters are less than one billion years old because the rays of older craters have been eroded by micrometeorites (as described in Regolith, below). You can see the rays around the craters Copernicus and Kepler (craters numbered 69 and 68, respectively) on page 108.

Regolith. A fine grained "soil" that covers the surface of the Moon. Created from the bombardment of the surface by micrometeorites, the regolith varies in depth from 3 to 15 feet in the maria, and to 50 feet or more in the highlands. The micrometeorites that bombard Earth burn up in the atmosphere.

Apollo Lunar Landings

Mission	Date	Three Astronauts *Circled the Moon in Command Module
Apollo 11	July 20, 1969	Armstrong, Aldrin, Collins* Apollo 12
Nov 19, 1969	Conrad, Bean, Gordon*	
Apollo 14	Feb 5, 1971	Shepard, Nitchell, Roosa*
Apollo 15	July 30, 1971	Scott, Irwin, Worden*
Apollo 16	April 21, 1972	Young, Duke, Mattingly
Apollo 17	Dec 11, 1972	Cernan, Schmitt, Evans*

Planets

The planets are best observed with a telescope. Mercury, Venus, Mars, Jupiter and Saturn are the naked-eye planets and are fairly "easy" to spot because they are bright. They are delights to first-time observers.

Mercury, Venus, Earth and Mars are known as the Terrestrial Planets, being Earthlike or rock like in nature. Jupiter, Saturn, Uranus and Neptune are known as the Gas Giants because they are very large compared to Earth and have atmospheres that extend downward for thousands of miles, thickening to a liquid and then a solid.

Mercury

Riddled with craters, Mercury looks like the Moon, but it is elusive to see because it orbits close to the Sun, "peeking out," just a few times a year. So, just to see Mercury in the sky is a treat, all by itself.

Observing Mercury. Mercury is visible only for a short time, up to an hour, at dusk or dawn, near the horizon of a Sun that has just set or is about to rise. Unfortunately, this places Mercury very low and in the most turbulent part of the sky, sometimes making it disappointing to view through a telescope because it might look like a bubbling blob.

The window of opportunity to see Mercury is about a week's time, two or three times a year, when it is farthest from the Sun, at what is called its greatest eastern or western elongation, and will appear at half phase. Consult an astronomy internet site for dates. An obstructed horizon, with houses, trees or low-lying clouds can easily foil your attempt to locate this planet because the most it will be above the horizon is about one pencil's length at an arm's distance. For evening dates, start searching about 30 minutes after sunset. You will have about one-half hour to see Mercury. For morning dates, start searching about one hour prior to sunrise. In either case, Mercury will appear as bright as magnitude -2 in a lightened sky above and near the sunrise/sunset point, so it may be the only "star" visible in the twilight, making it easy to identify. At times, it will be plainly visible to the naked eye, but more often, it may blend in with the lightened sky and you may need binoculars to help locate it because it can be easily missed unless you are looking directly at it. Oh, Mercury does not have any moons.

Often referred to as the morning or evening star, it can linger for months as a shining beacon above the eastern or western horizon. At its brightest, and without competition from the Moon, it will cast shadows.

Observing Considerations

spoiler to observing "closer" double stars is poor seeing caused by a turbulent atmosphere. During these times, stars appear as big scintillating blurs that makes stars close to one another impossible to separate. This effect usually exists with stars close to the horizon, even on nights of good seeing.

Generally, when observing double stars, start with lower magnifications and work your way up to higher magnifications. After some experience, you will know the magnification required to split or separate double stars with specific arc angle separations.

The separation distance of many double stars varies over time because the stars are in binary systems, where one star revolves around the other (or they revolve about each other). So, some of the separation values listed in this atlas will change over time.

Examples of Airy disks and their associated rings that can be seen around stars at higher magnifications with good, well-alligned optics and good seeing conditions. Left: The Airy disk and rings around a bright star. Center: The appearance of a very close double star with less than an arc second of separation. It cannot be split into two separate stars but is observed as the merger of two Airy disks. Right: The Airy disks around a resolved or "split" double star with a fainter component.

To observe very close doubles, around 1 arc second of separation, it will take a night of good seeing and 200x magnification or more to discern the two stars.

And, when you observe stars at these higher magnifications, they will appear as little disks-these are called "Airy disks" and are a result of the wave nature of light. The small disks do not represent the actual diameters of the stars. Additionally, there are a few rings of light around any Airy disk. Both the Airy disk and associated rings are more noticable with brighter stars. For very close doubles, those around one-half to one arc second separation, the best "separation" that you will get are two merged Airy disks or "one" that appears elongated.

The Deep Sky Objects (DSOs)

For the following objects, the darker a moonless night sky, the better. You can forget about observing these objects within any major city, but you might fair better on their outskirts. If you live in the heart of a city, you will have to travel to a darker site to enjoy viewing these objects. At a dark location, almost every object plotted in this atlas can be seen in a smaller, 6-inch diameter telescope.

Binocular Note in Regards to DSOs

Some deep sky objects are large and might not be recognized if viewed in a telescope. For example, the Pleiades, because of its size, is best viewed in its entirety through binoculars. The cluster, IC 4665 , in Ophiuchus, was an overlooked Messier and NGC object because you need lower magnifications to recognize it in its entirety. And, some objects, like the M33 galaxy, are often easier to see in binoculars because of their large size and low surface brightness.

Observing Clusters of Stars

The best example of a cluster is the Pleiades, which is visible to the naked eyes. But, there are many more smaller and fainter clusters that can be seen only with telescopes. Start with magnifications around 50x. At first, it might be somewhat challenging to positively identify clusters,
but after observing several, you will catch on. A good starting point is to find and observe the smaller and brighter Messier clusters like M6, M7, M11, M25, M34, M35, M36, M37, M38, M41, M46, M47, M48 and M67. This will give you a foundation for finding others that are smaller and fainter. Some clusters stand out and are distinct from the surrounding stars while others blend in more and are thus harder to identify. Clusters composed of fainter stars that cannot be resolved by smaller telescopes will appear as faint hazy patches and may only be glimpsed using averted vision, while a larger diameter telescope could show them plainly.

Observing Globular Clusters

In smaller telescopes, globular clusters often look like unremarkable faint cotton balls that brighten towards their centers. Some of the bigger and brighter ones like M3, M13 and M22 will, however, show a sprinkle of faint but distinct stars. Globular clusters look absolutely spectacular in very large telescopes (around 12 inches in diameter and up) because these telescopes can resolve many of the fainter stars that make up these clusters, so you can literally see hundreds of stars in the shape of a ball. Start with magnifications around 50x.

Observing Planetary Nebulae

The Messier list of planetary nebulae consists of M27, M57, M76 and M97. M57, the Ring Nebula, is much smaller than most people think and requires 100x or higher in order to recognize it the first time. Overall, the Messier planetary nebulae are not representative of the NGC planetary nebulae because they are large and fairly bright. Many of the NGC planetary nebulae are stellar-like, that is, they look like stars at lower magnifications and will only assume a small disk-type appearance with sufficient magnification, around 100x to 250x. These objects were originally dubbed "planetary" because of their roundish shaperesembling the disks of the planets.

Observing Nebulae

Although there are some bright nebulae, like M17, M18, M42 and NGC 3372, in general, nebulae are difficult to observe because they are faint and gossamer. Needless to say, dark skies are necessary to see these objects. Averted vision can help to catch a glimpse of those that are faint. Another technique for those that are fainter (and, this applies to galaxies, too) is to either let the nebulae drift through the eyepiece field-ofview (turn off any tracking motors) or move/slew the telescope back and forth slowly. The movement of faint objects sometimes registers with the eye, especially in the area of peripheral vision.

Observing Galaxies

There are many more galaxies than all other DSOs combined. Observing them is a similar experience to observing nebulae. Therefore, they are very affected by light pollution. Although some galaxies brighten toward their cores or centers, none are as bright or detailed as the brightest nebulae. Since galaxies are outside our galaxy, no individual stars can be seen or resolved except for a rare supernova. For the most part, galaxies appear grayish, gossamer, plain and often, just faint smudges. Spiral galaxies that are "face on" are very faint, like M33 and M101, while those that are "edge on" are much brighter because all their light is concentrated along a band, like M82. Some arms of spiral galaxies can be glimpsed, like with M51. Overall, elliptical galaxies are fainter than spiral galaxies and will be more challenging to see. Although the Andromeda Galaxy (M31), is extremely large and "bright" (you can see it with the naked eyes), you will not be able to see any detail like in photos. Review the observing technique described about nebulae in the above paragraph to help see faint galaxies.

Glossary

Many stars near the end of their lives expand to a hundred or thousand times their original diameter before they finally "die" to become a white dwarf, neutron star or black hole. Near the end of our Sun's life, it will puff up to become a red giant star having a diameter about 250 times its present diameter-perhaps expanding beyond Earth's orbit. Supergiant stars are stars that started with masses from 8 to 12 times that of the Sun and expand, at the end of their lives, anywhere from 30 to 500 and on to 1,000 times the diameter of our Sun. The very largest stars are called hypergiants with initial masses ranging from 100 to 265 times that of our Sun, having expanded diameters reaching 1,000 times or more of our Sun and with luminosities upwards of two million times that of our Sun.

The distance to stars is measured using the unit of length called a light year (ly). One light year is the distance that light can travel in one year's time which is nearly 6 trillion miles or 9.5 trillion kilometers. The stars that we see in the sky range anywhere from 4 ly to 3,000 ly away. All the stars in the sky are in our Milky Way Galaxy.

Star Cluster. A general term that refers to an open cluster, galactic cluster or globular cluster. See Cluster.

Star of Bethlehem. See Conjunction.
Summer Solstice. The 90° point on the ecliptic (chart 5E \& in Taurus). When the Sun is at this position, about June 21, it is the start of Summer in the northern hemisphere.

Summer Triangle. The three bright stars, Altair in Aquila, Deneb in Cygnus and Vega in Lyra.

Sun. The name commonly given to the star that Earth orbits. The ancient Roman and Greek names are respectively, Sol and Helios. So, the Sun is the closest star to Earth-sometimes asked as a "trick" question.

Supergiant Stars. See Star.
Supernova (plural: Supernovae). An explosion of a massive star, at the end of its life, of such intensity that the light emitted outshines all the stars in its galaxy. A supernova can remain brilliant for several weeks. They occur infrequently in our galaxy, so amateur and professional astronomers observe them more often in other galaxies. The last supernova visible in our galaxy was seen in the year 1604. A supernova explosion leaves a nebula remnant. Well-known examples are the Crab Nebula (M1) in Taurus and the larger Veil Nebula (NGC 6960/6992) in Cygnus.

Telrad. A popular "finder" that is attached to a telescope and aids pointing a telescope to an object or spot in the night sky. The Telrad is a reflex-sight finder that projects a red bullseye onto the night sky. This reticle pattern is reproduced on the side of the main charts. The bullseye reticle does not actually get projected onto the sky but is reflected back to the eye from an angled piece of glass. Like all reflex-sight finders, the Telrad provides no

Telrad Reflex Finder

Telescope. An optical instrument that magnifies distant objects. The telescope was invented in 1608 and by the end of 1609 , Galileo had improved it by increasing its magnification from 3x to about 30x.

There are two basic types of telescopes, the original refractor invented from using eyeglass lenses and the reflector, a telescope that uses a concave mirror to focus light, first built by Newton in 1668 and called the Newtonian reflector in his honor. There are also hybrid telescopes, a combination of a refractor and reflector, called catadioptrics, and the most common design is called the Schmidt-Cassegrain Telescope or SCT, which was first made popular by Celestron telescopes in the early 1970s.

A Newtonian reflector telescope of 6 to 8 inches in diameter is a very adequate telescope for exploring the night sky. This type of telescope is the least expensive per aperture inch, that is, it is the best deal for the money (great for those on a budget or just getting started). They usually have simple, manual, altazimuth mounts, and in this form, are often called Dobsonians, after John Dobson who popularized larger, low-cost Newtonian telescopes on simple altazimuth mounts. Today, Newtonians used by amateurs can have diameters more than 36 inches and these large telescopes are best for observing the fainter deep sky objects.

Refractor telescopes typically have diameters that range in size from 2 to 6 inches but the most popular sizes are from 3 to 4 inches. The highest quality refractors, known as "apochromatics," are, by far, the most expensive telescopes per optical inch but they also have the highest image quality of any telescope.

The Schmidt-Cassegrain Telescope or SCT generally provides the most "bang" for the buck because it usually includes a computer-motorized mount that will automatically "GO TO" and follow any object chosen from a hand controller. The most popular size is 8 inches in diameter. Anything larger in diameter starts to get heavy fast.

Magnification should not be a consideration when buying a telescope. The highest useful magnification for any telescope, independent of it size, is about 350 x because this represents the resolution limit created by the turbulence in the atmosphere. Theoretically, a 12 -inch diameter telescope can see twice as much detail as a 6 -inch but our turbulent atmosphere places the limit on seeing detail. The greatest resolution (or smallest detail) that a "normal" Earth-based telescope can resolve is about 0.5 arc seconds ($1 / 2$ an arc second), which is the theoretical limit of an 8 -inch diameter telescope.

What is the advantage of larger diameter telescopes if an 8 -inch provides the maximum resolution? It is light-gathering capability-the ability to see fainter objects. For example, a 12-inch diameter telescope has 4 times the surface area of a 6 -inch diameter telescope, so fainter objects will visually be brighter in a 12 -inch diameter telescope than in a 6 -inch. In this case, the 12 -inch will allow seeing objects to about 1.5 magnitudes fainter than the 6 -inch (1.5 magnitudes is more significant than you might think).

A GOTO or GO TO telescope actually refers to the mount, but some GO TO mounts have integrated telescopes, like with many SCTs manufactured by Celestron and Meade.

Chart Reference

Greek	$\boldsymbol{\alpha}$ alpha	$\boldsymbol{\varepsilon}$ epsilon	\mathbf{l} iota	$\boldsymbol{\nu}$ nu	$\boldsymbol{\rho}$ rho	$\boldsymbol{\varphi}$ phi
Alphabet	$\boldsymbol{\beta}$ beta	$\boldsymbol{\zeta}$ zeta	$\boldsymbol{\kappa}$ kappa	$\boldsymbol{\xi}$ xi	$\boldsymbol{\sigma}$ sigma	$\boldsymbol{\chi}$ chi
	$\boldsymbol{\gamma}$ gamma	$\boldsymbol{\eta}$ eta	$\boldsymbol{\lambda}$ lambda	$\boldsymbol{0}$ omicron	$\boldsymbol{\tau}$ tau	$\boldsymbol{\psi}$ psi
	$\boldsymbol{\delta}$ delta	$\boldsymbol{\theta}$ theta	$\boldsymbol{\mu}$ mu	$\boldsymbol{\pi}$ pi	\mathbf{v} upsilon	$\boldsymbol{\omega}$ omega

[^0]: - "BEST" charts are underlined -
 ${ }^{1}$ Serpens, the Snake, is the only constellation having discontinous boundaries since it is being held across Ophiuchus, the Healer's body.
 The Snake's head, Caput, is located on the western side of Ophiuchus and its tail, Cauda, is located on the eastern side of Ophiuchus.

[^1]: ${ }^{1}$ See close-up chart A-12, too.
 ${ }^{2}$ Contains the Pillars of Creation (pictured on the back cover).

